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Abstract
Response dimension reduction in a sufficient dimension reduction (SDR) context has been widely ignored

until Yoo and Cook (Computational Statistics and Data Analysis, 53, 334–343, 2008) founded theories for it
and developed an estimation approach. Recent research in SDR shows that a semi-parametric approach can
outperform conventional non-parametric SDR methods. Yoo (Statistics: A Journal of Theoretical and Applied
Statistics, 52, 409–425, 2018) developed a semi-parametric approach for response reduction in Yoo and Cook
(2008) context, and Yoo (Journal of the Korean Statistical Society, 2019) completes the semi-parametric approach
by proposing an unstructured method. This paper theoretically discusses and provides insightful remarks on three
versions of semi-parametric approaches that can be useful for statistical practitioners. It is also possible to avoid
numerical instability by presenting the results for an orthogonal transformation of the response variables.

Keywords: conditional mean, multivariate regression, response dimension reduction, semi-para-
metric model, sufficient dimension reduction

1. Introduction

Multivariate regression Y ∈ Rr |X ∈ Rp is popular in many science fields when analyzing repeated
measures, longitudinal data and time series data, where r ≥ 2 and p ≥ 2. In regression, sufficient
dimension reduction (SDR) replaces the p-original predictors with lower-dimensional linearly trans-
formed predictors without loss of information with respect to selected aspects of Y|X. Accordingly,
SDR methods are focused on the reduction of X, not Y. However, a proper dimension reduction of
the responses can facilitate statistical analysis by avoiding the curse of dimensionality in multivariate
regression. If the reduction of multi-dimensional response variables is needed to be done, it is natu-
ral to follow the notion of SDR, which is to replace the responses with a lower-dimensional linearly
transformed one, without loss of information.

Yoo and Cook (2008) previously provide theoretical foundation and inference procedure for the
response dimension reduction in SDR context. In the seminal work, two types of response dimen-
sion reduction subspaces are newly defined without losing information on E(Y|X) and proposed an
approach to estimate the response reduction subspaces. The estimation approach is non-parametrical
and does not assume any specific regression models.

Cook (2007) recently showed that a semi-parametric approach in SDR can outperform non-
parametric methods. Following the idea, Yoo (2018) proposed two versions of semi-parametric re-
sponse dimension reduction approaches, called “principal response reduction (PRR)” and “principal
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fitted response reduction (PFRR)” in the context of Yoo and Cook (2008). Yoo (2018) confirms that
the two semi-parametric approaches have potential advantages in the response dimension reduction
over Yoo and Cook (2008). Next, Yoo (2019) developed “unstructured PFRR (UPFRR)”, which do
not assume the structure of the covariance matrix of the random error vectors in Yoo (2018) in the
estimation. The advantage of Yoo (2019) is a possibility of equivariant or invariant full-rank trans-
formation. Yoo (2019) also provides good guidelines to choose either PRR or PFRR. Therefore,
the semi-parametric response reduction would be complete when including the unstructured fitted
response reduction.

This paper provides insightful remarks on three semi-parametric approaches in order to clearly
distinguish differences among the three approaches. In addition, theoretical results for the orthogonal
transformation of the response variables in the response reduction are derived for the three semi-
approaches that include Yoo and Cook (2008). Normally, the full-rank transformation of the response
variables are incompatible to the response reduction subspaces, not like the case for the predictors.
However, in the case of the orthogonal transformation, some similar results to the predictor case can
hold.

The organization of the paper is as follows. Section 2 briefly introduces the short review on Yoo
and Cook (2008) and the three semi-parametric response reduction approaches. The following section
is devoted to two remarks on the three approaches. Section 4 is devoted to showing the results on the
orthogonal transformation. Section 5 summarizes the work.

For notational convenience, we define that S(B) stands for a subspace spanned by the columns of
B ∈ Rp×r and that Σx is the covariance matrix for a random vector X ∈ Rp. And, all proofs are given
in Appendix not to interrupt reading flow.

2. Review of response reduction

2.1. Non-parametric response reduction

For a multivariate regression of Y ∈ Rr |X ∈ Rp, suppose that there exists a q × r matrix L to have the
smallest possible rank among all possible matrices to satisfy

E(Y|X) = E
{
PT

L(Σy)Y|X
}
, (2.1)

where q ≤ r and PL(Σy) = L(LTΣyL)−1LTΣy is the orthogonal projection operator relative to the inner
product < v1, v2 >Σy= vT

1Σyv2.
If equation (2.1) holds, then predictors X influences the components of the conditional mean

E(Y|X) only through PL(Σy). This directly implies that lower-dimensional linear projection onto S(L)
can replace the original r-dimensional response Y without loss of information on E(Y|X). In Yoo and
Cook (YC) (2008), this type of response dimension reduction is defined as linear response reduction
for E(Y|X).

Next, it is assumed that there exists a k × k matrix K satisfying that

E(Y|X) = E
{
E
(
Y|X,KTY

)
|X
}
= E
{
E
(
Y|KTY

)
|X
}
, (2.2)

where k ≤ r and K is not equal to the identity matrix.
E(Y|KTY) in the last equivalence of (2.2) is a function of KTY; therefore, E(Y|X) is equivalently

expressed as E{g(KTY)|X} for some function g(·). Then, another dimension reduction of Y is accom-
plished, if k < r, and this response reduction is called a conditional response reduction for E(Y|X).
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The subspace spanned by columns of L and K are then called a ‘response dimension reduction sub-
space’.

Yoo and Cook (2008) show that S(K) ⊆ S(L) for L in (2.1) and K in (2.2) and that the two
subspaces are equal, if satisfying: A1. E(Y|KTY = a) is linear in a. Condition A1 is called the
linearity condition. The condition is satisfied, if Y is elliptically distributed. According to Hall and Li
(1993), the condition is expected to hold in a reasonable approximation. If condition A1 fails, Y can
be transformed for normality. Under condition A1, Yoo and Cook (2008) propose Σ−1

y cov(Y,X)Σ−1
x

to recover L and K.

2.2. Semi-parametric response reduction
2.2.1. Principal response reduction

A semi-parametric response reduction approach starts with the following multivariate regression with
assuming E(Y) = 0 and E(X) = 0 without loss of generality:

Y = Γνx + ε, (2.3)

where Γ ∈ Rr×d with ΓTΓ = Id and d ≤ r, ε ∼ N(0,Σ) and cov(νx, ε) = 0. In addition, νx is a
d-dimensional random function of X with a positive definite sample covariance and

∑
X=x νx = 0.

Supposing that νx = X, model (2.3) is equal to a multivariate linear regression.
One important assumption required for the response reduction is that S(Γ) is an invariant and

reducing subspace of Σ, which guarantee that Σ = ΓΩΓT + Γ0Ω0Γ
T
0 , where Γ0 ∈ Rr×(r−d) with

ΓT
0Γ0 = Ir−d and ΓT

0Γ = 0, Ω = ΓTΣΓ and Ω0 = Γ
T
0ΣΓ0.

Under model (2.3), Yoo (2018) shows that E(Y|X) = E(PT
Γ(Σy)Y|X), where PΓ(Σy) = Γ(ΓTΣyΓ)−1

ΓTΣy is the orthogonal projection operator relative to the inner product < v1, v2 >Σy= vT
1Σyv2. The

original response Y can be reduced through Γ without loss of information of E(Y|X).
The primary interest is then placed onto the estimation of Γ in model (2.3). The maximum likeli-

hood estimation approach is a natural choice, because the normal distribution of ε is assumed. Letting
Σ̂y be the usual moment estimator of Σy, Yoo (2018) shows that the maximum likelihood estimator
(MLE) of Γ is a set of the eigenvectors corresponding to the first d largest eigenvalues of Σ̂y. This
dimension reduction under model (2.3) is called PRR.

2.2.2. Principal fitted response reduction

The PRR utilizes the marginal information on Y without incorporating X. This might be somewhat
strange, because the mean function E(Y|X) is a function of X, not Y. To overcome this issue, we set
νx = ψfx:

Y = Γψfx + ε, (2.4)

where ψ is an unknown d × q matrix, and fx ∈ Rq is a known q dimensional vector-valued function of
the predictor with

∑
x fx = 0. The following notations are defined for convenience.

Y: the n × r data matrix for the responses

X: the n × p data matrix for the predictors

F: an q × n matrix constructed by stacking fT
x and PF = F(FTF)−1FT

Σ̂fit = YTPFY/n and Σ̂res = Σ̂y − Σ̂fit
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Yoo (2018) uses X, X2 exp(X), their combinations and the cluster indicator of X acquired from the
K-means clustering algorithm as the candidates of fx. If setting fx = X, PFY is equal to the ordinary
least squares, and hence Σ̂fit is the regression product sums of square.

Under model (2.4), the MLE of Γ does not have a close form. The likelihood over Γ is as follows.

L(Γ,Γ0) = −n
2

log
∣∣∣ΓT

0 Σ̂yΓ0
∣∣∣ − n

2
log
∣∣∣ΓTΣ̂resΓ

∣∣∣ .
Therefore, the MLE of Γ depend on both Σ̂y and Σ̂res. Yoo (2018) recommends a sequential selection
algorithm among a set of all the eigenvectors of Σ̂y, Σ̂fit, and Σ̂res, following the suggestion in Cook
(2007; Section 6.2). This approach to estimate Γ is called PFRR.

2.2.3. Unstructured principal fitted response reduction

In model (2.3), we assume that ε ∼ N(0,Σ > 0) and cov(νx, ε) = 0:

Y = Γνx + ε. (2.5)

The difference between models (2.3) and (2.5) is the structure of Σ along with Γ. In model (2.5), the
structure that Σ = ΓΩΓT + Γ0Ω0Γ

T
0 is no longer assumed.

Yoo (2019) presents the relationship between Σ and Σy for the invariant condition so that S(ΣΓ) ⊆
S(Γ) if and only if S(ΣyΓ) ⊆ S(Γ). That is, the invariant condition for Σ is equivalent to that for
Σy. Suppose that one estimates Γ through PRR or PFRR. The result then allows us to investigate
the invariant condition of Γ through a usual moment estimator of Σy. Then Yoo (2019) show that
E(Y|X) = E(PT

Γ(Σy)Y|X) for model (2.5), as long as the invariance of S(Γ) for Σy holds. So, from now
on, the invariant condition of Γ will be put on for Σy in model (2.5).

To utilize the information of predictors in the estimation of Γ, its fitted component model is con-
structed as:

Y = Γψfx + ε. (2.6)

Let Ed and Sd(E) stand for the first d largest eigenvectors of a matrix Ed and a subspace spanned
by the columns of Ed, respectively. Define that B = Σ̂−1/2

Σ̂fitΣ̂
−1/2

, Bres = Σ̂
−1/2
res Σ̂fitΣ̂

−1/2
res , and By =

Σ̂
−1/2
y Σ̂fitΣ̂

−1/2
y . Also, define that Λ̂ = (λ̂1, . . . , λ̂q) and V̂ = (γ̂1, . . . , γ̂q) be the ordered eigenvalues and

corresponding eigenvectors of Bres Let K̂d = diag(0, . . . , 0, λ̂d+1, . . . , λ̂q). Then, under model (2.6),
Yoo (2019) derives the following results:

(1) Ŝ(Γ) = Σ̂
1
2Sd(B) or Γ̂ = Σ̂

1
2 Bd.

(2) Σ̂ = Σ̂res + Σ̂
1
2
resV̂K̂dV̂TΣ̂

1
2
res = Σ̂

1
2
res

(
Ir + V̂K̂dV̂T

)
Σ̂

1
2
res.

(3) L d
UPFRR = −

n
2 log

∣∣∣Σ̂res
∣∣∣ + n

2
∑q

i=d+1 log
(
1 + λ̂i

)
.

(4) Ŝ(Γ) = Σ̂
1
2Sd(B) = Σ̂

1
2
resSd(Bres) = Σ̂

1
2
y Sd(By).

The response reduction though model (2.6) will be called “unstructured PFRR (UPFRR)”.
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Table 1: Parameters and their dimensions in PFRR and UPFRR

Γ ψ Σ Total
PFRR (r − u)u qu u(u + 1)/2 + (r − u)(r − u + 1)/2 qu + r(r + 1)/2

UPFRR (r − u)u qu r(r + 1)/2 (r − u)u + qu + r(r + 1)/2

PFRR = principal fitted response reduction; UPFRR = unstructured PFRR.

3. Two remarks on PRR, PFRR, and UPFRR

3.1. First remark on PRR and PFRR

Under PRR and PFRR, recall that Σ = ΓΩΓT + Γ0Ω0Γ
T
0 , where Γ0 ∈ Rr×(r−d) with ΓT

0Γ0 = Ir−d and
ΓT

0Γ = 0, Ω = ΓTΣΓ and Ω0 = Γ
T
0ΣΓ0. For PRR, the covariance matrix Σ cannot be restored because

Ω is not estimable. In PFRR, Ω and Ω0 can be estimated with Γ̂
T
Σ̂resΓ̂ and Γ̂

T
0 Σ̂yΓ̂0, respectively.

Therefore, a sample version of Σ is possibly constructed by Γ̂Γ̂
T
Σ̂resΓ̂Γ̂

T
+ Γ̂0Γ̂

T
0 Σ̂yΓ̂0Γ̂

T
0 . It should

be noted that the different sample quantities for Σ̂res and Σ̂y are used for Γ and Γ0 and it is clearly
observed that this does not coincide with its population structure.

The structural dimension d of Γ is assumed to be known in the estimation of Γ for PRR and PFRR.
Since it is normally unknown, it should be estimated through a hypothesis test of H0 : d = m versus
H1 : d = min(q, r) for m = 0, 1, . . . ,min(q, r)−1. Since both PRR and PFRR use likelihood functions,
a likelihood ratio test (LRT) should be a natural choice. For PFRR, the dimension estimation by LRT
can be done with χ2

q(r−m), while it is not plausible in PRR because Σ is not estimable.

3.2. Second remark on PFRR and UPFRR

Under UPFRR, Γ spans an invariant subspace of Σ, if and only if Γ spans an invariant subspace of Σy.
This equivalence holds for PRR and PFRR, which is summarized in the following proposition.

Proposition 1. Assume that model (2.3) holds. Then, S(ΣΓ) ⊆ S(Γ) if and only if S(ΣyΓ) ⊆ S(Γ).

According to Cook et al. (2007, Section 2.2), for a symmetric matrix A, any invariant subspace of
A is also a reducing subspace. Therefore, an invariant subspace of Σ becomes a reducing subspace.
This implies that PFRR and UPFRR are the same model. The difference between the two models is if
the structure of Σ = ΓΩΓT + Γ0Ω0Γ

T
0 is kept in the estimation of Γ. The benefit to keep the structure,

which is PFRR, is less parameters in the model than UPFRR. Table 1 summarizes the numbers of
parameters of PFRR and UPFRR along with the difference (r − u)u. More parameters are a drawback
of UPFRR, but it would not be a concern if the dimension of the response reduction subspace is not
high. For example, suppose that r = 4 and u = 1 or = 2. Then the difference will be 3 for u = 1 and 4
for u = 2. However, the advantage of the approach is that UPFRR has a closed form of the estimator
of Γ and obtains the equivariant transformation results for the responses.

4. Orthogonal transformation

The next proposition summarizes results of an orthogonal transformation of Y for response dimension
reduction.

Proposition 2. Consider an orthogonal transformation of Y such that W = OTY for an orthogonal
matrix O ∈ Rr×r, and let Γw = OTΓ.

Assume that E(Y|X) = PT
Γ(Σy

E(Y|X). Then, the following statement holds.

(a) It holds that E(W|X) = PT
Γw(Σw)E(W|X).
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Assume multivariate regression models in (2.3), (2.4), and (2.6).

(b) S(ΣwΓw) ⊆ S(Γw) .

(c) An MLE of Γw is equal to OTΓ̂ for PRR, PFRR, and UPFRR.

Proposition 2(a) indicates that Γw is a basis matrix of a response dimension reduction subspace for
a regression of W|X. Γw is re-written as O−1Γ since the inverse matrix of O is OT. This coincides with
for SDR for X (Cook, 1998, Proposition 6.3). Proposition 2(a) is not guaranteed for any non-singular
transformation ATY of Y because the structure of E(Y|X) is changed according to A. One good choice
for O should be the eigenvectors of cov(Y). Let Ω be a set of all eigenvectors of cov(Y). Then, the
covariance matrix ofΩTY becomes a diagonal matrix, not the identity matrix, so numerical instability
can be avoided, if necessary. Suppose that a response dimension reduction is done for a regression of
ΩTY|X, and obtain Γ̂ω as its estimate. Then, the basis estimate for the response reduction of Y|X is
directly computed as ΩΓ̂ω.

Proposition 2(b) implies that Γw is an invariant subspace of Σw, so Γw is also an invariant space
for the covariance matrix of OTε. This directly indicates that Γw is a basis matrix of the response
reduction.

According to Proposition 2(c), the basis matrix of the response reduction for the orthogonal trans-
formation is estimated by the estimate before the transformation pre-multiplied by the orthogonal
matrix, so the same result is derived as the Yoo-Cook response reduction in Proposition 2(a).

5. Discussion

SDR has been successful in high-dimensional data analysis when involving multi-dimensional re-
sponses; consequently, their dimension reduction can facilitate the data analysis and induce undiscov-
ered scientific results. Following the notion of SDR, the response dimension reduction was founded
in Yoo and Cook (2008) along with a proposed non-parametrical approach. Two semi-parametric
approaches were recently developed in Yoo (2018) and showed that the latter has potential advan-
tage in the estimation of response reduction subspace over the former. Yoo (2019) also completes
the semi-parametric method by proposing an unstructured approach. In the paper, the three version
of the semi-parametric approach are discussed theoretically and provide insightful remarks that are
beneficial to usual statistical practitioners to employ the semi-proposed approach. The paper also
presents the results on an orthogonal transformation of response variables for the seminal work of
Yoo and Cook (2008) and the three semi-parametric approaches. It is shown that it is possible to
avoid numerical instability in practice in the estimation of a basis of the response reduction subspace.
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Appendix: Proofs

Proof of Proposition 1: (⇒) By construction of model (2.3), we have Σy = Γ cov(νx)ΓT + Σ, and so
Σy = Γ cov(νx)ΓT + ΓΩΓT + Γ0Ω0Γ

T
0 . So, ΣyΓ = Γ cov(νx) + ΓΩ = Γ{cov(νx) + Ω}. This directly

implies that ΣyΓ is expressed as a linear combination of Γ, so we have S(ΣyΓ) ⊆ S(Γ). (⇐) Assume
that S(ΣyΓ) ⊆ S(Γ). The assumption indicates that there is a d × d matrix η∗ such that ΣyΓ = Γη

∗.
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Then we have that Σ = Σy − Γ cov(νx)ΓT, so ΣΓ = ΣyΓ − Γ cov(νx) = Γ(η∗ − cov(νx)). This indicates
that ΣΓ is expressed as a linear combination of Γ, so we have S(ΣΓ) ⊆ S(Γ). This completes the
proof. �

Proof of Proposition 2: Recall that OOT = OTO = Ir and W = OTY. It is easily noted that Σw =

cov(W) = OTΣyO.

• Proof of part (a): By the assumption, we have the following equivalences.

E(Y|X) = PT
Γ(Σy)E(Y|X) = ΣyΓ

(
ΓTΣyΓ

)−1
ΓTE(Y|X)

= OOTΣyOOTΓ
(
ΓTOOTΣyOOTΓ

)−1
ΓTOOTE(Y|X)

= OΣwΓw

(
ΓT

wΣwΓw

)−1
ΓT

wE
(
OTY|X

)
= OPT

Γw(Σw)E(W|X).

By pre-multiplying OT to both sides in the last equivalence above, we have E(W|X) = PT
Γw(Σw)E(W|X).

This completes the proof.

• Proof of part (b): By the assumption of PRR, PFRR, and UPFRR given in (2.3), (2.4), and (2.6),
respectively, we have the following equivalences.

S(ΣyΓ) ⊆ S(Γ)⇔ S
(
OOTΣyOOTΓ

)
⊆ S
(
OOTΓ

)
⇔ OS(ΣwΓw) ⊆ OS(Γw).

By pre-multiplying OT to both sides in the last equivalence, we have S(ΣwΓw) ⊆ S(Γw) and this
completes the proof.

• Proof of part (c): We have that OTY = OTΓνx +OTε, equivalently W = Γwνx + εw by letting εw =

OTε. Under PRR and PFRR in (2.3) and (2.4), ΣO = cov(εw) = OT(ΓΩΓT)O +OT(Γ0Ω0Γ
T
0 )O. It

is easily noted that ΓT
w(OTΓ0) = 0, so OTΓ0 becomes the orthogonal complement of Γw. Letting

OTΓ = Γw,0, ΣO = ΓwΩΓ
T
w + Γw,0Ω0Γ

T
w,0. Therefore, the conditions required in PRR and PFRR

hold for W|X. It is also noted that Σ̂w = OTΣ̂yO, Σ̂fit,w = OTΣ̂fitO, and Σ̂res,w = OTΣ̂resO. This
implies that the largest eigenvectors of Σ̂w, Σ̂fit,w, and Σ̂res,w is the same as the largest eigenvectors
of Σ̂y, Σ̂fit, and Σ̂res pre-multiplied by OT, respectively.

By this relation, for PRR, we directly have that Γ̂w = OTΓ̂.

For PFRR, we have the following likelihood function:

L(Γw,Γw0) = −n
2

log
∣∣∣ΓT

w0Σ̂wΓw0
∣∣∣ − n

2
log
∣∣∣ΓT

wΣ̂res,wΓw

∣∣∣
= −n

2
log
∣∣∣(OΓw0)TΣ̂y(OΓw0)

∣∣∣ − n
2

log
∣∣∣(OΓw)TΣ̂res(OΓw)

∣∣∣ .
Therefore, Γw is maximized at Γ̂, so OΓ̂w = Γ̂. This directly implies that Γ̂w = OTΓ̂.

For UPFRR in the regression of W|X, we have

Bw = Σ̂
− 1

2
w Σ̂fit,wΣ̂

− 1
2

w = OTOΣ̂−
1
2

w OTOΣ̂fit,wOTOΣ−
1
2

w OTO

= OTΣ̂
− 1

2
y Σ̂fitΣ̂

− 1
2

y O
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Therefore, the largest eigenvectors of Bw is the same as those of By pre-multiplied by OT. Let Bw,d

be the first largest d eigenvectors of Bw. Since Γ̂w = Σ̂
1/2
w Bw,d = OTOΣ1/2

w OTOBw,d = OTΣ1/2
y By,d =

OTΓ̂. This completes the proof for part (c).

�
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