• Title/Summary/Keyword: Parameters Optimization

Search Result 3,253, Processing Time 0.03 seconds

A Cluster modeling using New Convergence properties (새로운 수렴특성을 이용한 클러스터 모델링)

  • Kim, Sung-Suk;Baek, Chan-Soo;Kim, Sung-Soo;Ryu, Joeng-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.382-384
    • /
    • 2004
  • In this parer, we propose a clustering that perform algorithm using new convergence properties. For detection and optimization of cluster, we use to similarity measure with cumulative probability and to inference the its parameters with MLE. A merits of using the cumulative probability in our method is very effectiveness that robust to noise or unnecessary data for inference the parameters. And we adopt similarity threshold to converge the number of cluster that is enable to past convergence and delete the other influence for this learning algorithm. In the simulation, we show effectiveness of our algorithm for convergence and optimization of cluster in riven data set.

  • PDF

A Proposal of LOS Guidance System of a Ship in Straight-line Navigation under Ocean Currents and Its Optimization Using Genetic Algorithm (해류중 직선 항행하는 선박의 LOS 가이던스 시스템의 제안과 유전 알고리즘을 이용한 최적화)

  • Kim Jong-Hwa;Lee Byung-Kyul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.124-131
    • /
    • 2005
  • This paper suggests LOS(Line-Of-Sight) guidance system of a surface vessel in straight-line navigation under ocean currents An LOS vector from the vessel to a point on the path between two way-points is decided and a heading angle is calculated to converge to follow the desired path based on the LOS vector This guidance system is called LOS guidance system. The suggested LOS guidance law has parameters to be properly chosen according to navigational environment. Parameters of LOS guidance system are optimized to reduce propulsive energy and/or position error between desired Position and present position of a ship using genetic algorithm which is a strong optimization algorithm with adaptational random search The effectiveness of the suggested LOS guidance system is assured through computer simulations.

Finite Element Model Updating of Framed Structures Using Constrained Optimization (구속조건을 가진 최적화기법을 이용한 골조구조물의 유한요소모델 개선기법)

  • Yu, Eun-Jong;Kim, Ho-Geun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.446-451
    • /
    • 2007
  • An Improved finite element model updating method to address the numerical difficulty associated with ill-conditioning and rank-deficiency. These difficulties frequently occur in model updating problems, when the identification of a larger number of physical parameters is attempted than that warranted by the information content of the experimental data. Based on the standard Bounded Variables Least-squares (BVLS) method, which incorporates the usual upper/lower-bound constraints, the proposed method is equipped with new constraints based on the correlation coefficients between the sensitivity vectors of updating parameters. The effectiveness of the proposed method is investigated through the numerical simulation of a simple framed structure by comparing the results of the proposed method with those obtained via pure BVLS and the regularization method. The comparison indicated that the proposed method and the regularization method yield approximate solutions with similar accuracy.

  • PDF

Analysis and Optimization of Grinding Condition by Response Surface Model (반응표면모델(RSM)에 의한 평면연삭조건 최적화 및 평가)

  • Kim S.O.;Kwak J.S.;Koo Y.;Sim S.B.;Jeong Y.D.;Ha M.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1257-1260
    • /
    • 2005
  • Grinding process has unique characteristics compared with other machining processes. The cutting edges of the grinding wheel don't have uniformity and act differently on the workpiece at each grinding. The response surface analysis is one of various methods for optimizing and evaluating the process parameters to achieve the desired output. In this study, the effect of the grinding parameters on outcomes of the surface grinding was analyzed experimently. To predict the grinding outcomes and to select the grinding conditions before grinding, the second-order response surface models for the grinding force and the surface roughness were developed.

  • PDF

Optimization of Process Parameters Using a Genetic Algorithm for Process Automation in Aluminum Laser Welding with Filler Wire (용가 와이어를 적용한 알루미늄 레이저 용접에서 공정 자동화를 위한 유전 알고리즘을 이용한 공정변수 최적화)

  • Park, Young-Whan
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.67-73
    • /
    • 2006
  • Laser welding is suitable for welding to the aluminum alloy sheet. In order to apply the aluminum laser welding to production line, parameters should be optimized. In this study, the optimal welding condition was searched through the genetic algorithm in laser welding of AA5182 sheet with AA5356 filler wire. Second-order polynomial regression model to estimate the tensile strength model was developed using the laser power, welding speed and wire feed rate. Fitness function for showing the performance index was defined using the tensile strength, wire feed rate and welding speed which represent the weldability, product cost and productivity, respectively. The genetic algorithm searched the optimal welding condition that the wire feed rate was 2.7 m/min, the laser power was 4 kW and the welding speed was 7.95 m/min. At this welding condition, fitness function value was 137.1 and the estimated tensile strength was 282.2 $N/mm^2$.

Manufacturing Line Optimization for Discrete Event Simulation and Genetic Algorithm (이산사건 시뮬레이션과 유전자 알고리즘을 이용한 제조업 공장의 라인 최적화)

  • Jeong, Young-Soo;Yim, Hyun-June;Jee, Hae-Seong;Lee, Kwang-Kook
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.1
    • /
    • pp.67-75
    • /
    • 2008
  • In spite of rapidly increasing interests in digital manufacturing, there still lacks of a systematic approach in manufacturing line flow analysis via modeling and simulation; currently, the parameters for designing manufacturing line are defined by being solely based on engineers experiences. The paper proposes an application of the genetic algorithm to a discrete event line simulation finding optimal set of parameters for manufacturing line balancing problem. The proposed method has been applied to two example problems-one is a simple manufacturing model and the other for shipyard industry-in order to demonstrate its validity and usefulness.

Process Optimization of Industrial Solid Freeform Fabrication System (산업용 임의형상제작(Solid Freeform Fabrication)시스템의 공정변수 최적화)

  • Kwak, Sung-Jo;Lee, Doo-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.7
    • /
    • pp.602-609
    • /
    • 2008
  • This paper presents experimental optimization of process parameters for a newly developed SFF(Solid Freeform Fabrication) system. Two critical process parameters, layering thickness and curing period, which have a large effect on the quality of the product, are optimized through experiments. Specimens are produced using layering thicknesses of 60, 80, 100, 120, 140, and $160\;{\mu}m$ and curing periods of 0, 10, 20, and 30 minutes under the same processing conditions, i.e., build-room temperature, feed-room temperature, roller speed, laser power, scan speed, and scan spacing. The specimens are tested to compare and analyze performance indices such as thickness accuracy, flatness, stress-strain characteristics, and porosity. The experimental result indicates that layering thickness of $80{\sim}100\;{\mu}m$ and curing period of $20{\sim}30$ minutes are recommended for the developed industrial SFF system.

The Optimal Design of gas oven assembly line with the Simulation and Evolution Strategy (시물레이션과 진화 전략을 이용한 가스 오븐 조립라인의 최적 설계)

  • Kim, Kyung-Rok;Lee, Hong-Chul
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.715-718
    • /
    • 2009
  • The assembly line is one of the typical process hard to analyze with mathematical methods including even stochastic approaches, because it includes many manual operations varying drastically depending on operators' skills. In this paper, we suggest the simulation optimization method to design the optimal assembly line of a gas oven. To achieve the optimal design, firstly, we modeled the real gas oven assembly line with actual data, such as assembly procedures, operation rules, and other input parameters and so on. Secondly, we build some alternatives to enhance the line performance based on business rules and other parameters. The DOE(Design Of Experiment) techniques were used for testing alternatives under various situations. Each alternatives performed optimization process with evolution strategy; one of the GA(Genetic Algorithm) techniques. As a result, we can make about 7% of throughputs up with the same time and cost. By this process, we expect the assembly line can obtain the solution compatible with their own problems.

  • PDF

A Study on the Design Optimization of Composite cylindrical shells with Vibration, Buckling Strength and Impact Strength Characteristics (복합재료 원통쉘의 진동, 좌굴강도, 충격강도 특성 및 그의 설계최적화에 관한 연구)

  • 이영신;전병희;오재문
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.48-69
    • /
    • 1997
  • The use of advanced composite materials in many engineering structures has steadily increased during the last decade. Advanced composite materials allow the design engineer to tailor the directional stiffness and the strength of materials as required for the structures. Design variables to the design engineer include multiple material systems. ply orientation, ply thickness, stacking sequence and boundary conditions, in addition to overall structural design parameters. Since the vibration and impact strength of composite cylindrical shell is an important consideration for composite structures design, the reliable prediction method and design methodology should be required. In this study, the optimum design of composite cylindrical shell for maximum natural frequency, buckling strength and impact strength are developed by analytic and numerical method. The effect of parameters such as the various composite material orthotropic properties (CFRP, GFRP, KFRP, Al-CFRP hybrid), the stacking sequences, the shell thickness, and the boundary conditions on structural characteristics are studied extensively.

  • PDF

Modeling of High-speed 3-Disional Embedded Inductors (고속 3차원 매립 인덕터에 대한 모델링)

  • 이서구;최종성;윤일구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.139-142
    • /
    • 2001
  • As microeletronics technology continues to progress, there is also a continuous demand on highly integration and miniaturization of systems. For example, it is desirable to package several integrated circuits together in multilayer structure, such as multichip modules, to achieve higher levels of compactness and higher performance. Passive components (i.e., capacitors, resistors, and inductors) are very important for many MCM applications. In addition, the low-temperature co-fired ceramic (LTCC) process has considerable potential for embedding passive components in a small area at a low cost. In this paper, we investigate a method of statistically modeling integrated passive devices from just a small number of test structures. A set of LTCC inductors is fabricated and their scattering parameters (5-parameters) are measured for a range of frequencies from 50MHz to 5GHz. An accurate model for each test structure is obtained by using a building block based modeling methodology and circuit parameter optimization using the HSPICE circuit simulator.

  • PDF