• 제목/요약/키워드: Parameters Optimization

검색결과 3,253건 처리시간 0.034초

Robust Design Methodology of a Coupled System (연성 시스템의 강건설계 방법)

  • Lee, Kwon-Hee;Park, Gyung-Jin;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1763-1768
    • /
    • 2003
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. Based on the independence axiom of axiomatic design theory that illustrates the relationship between desired specifications and design parameters, the designs can be classified into three types: uncoupled, decoupled and coupled. To best approach the target performance with the maximum robustness is one of the main functional requirements of a mechanical system. Most engineering designs are pertaining to either coupled or decoupled ones, but these designs cannot currently accomplish a real robustness thus a trade-off between performance and robustness has to be made. In this research, the game theory will be applied to optimize the trade-off.

  • PDF

CAE Analysis and Optimization of Injection Molding for a Mobile Phone Cover (휴대폰 커버 사출성형의 CAE 해석 및 최적화)

  • Park, Ki-Yoon;Kim, Hyeon-Seong;Kang, Jin-Hyun;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제11권2호
    • /
    • pp.60-65
    • /
    • 2012
  • This paper deals with an CAE analysis and optimization of injection molding for a mobile phone cover. Two design goals are established in the optimization; one is to switch over the feed system from cold runner to hot runner for the purpose of reducing material costs, and the other is to minimize the warpage in order to improve product quality. By the full-factorial experiments for design parameters, we showed that the cold runner design could be changed to the hot runner design by replacing the current resin with a new resin of higher fluidity. In addition, we could significantly reduce the warpage of the cover product under the hot runner system by optimizing packing pressure and packing time.

Improved Performance of Permanent Magnet Synchronous Motor by using Particle Swarm Optimization Techniques

  • Elwer, A.S.;Wahsh, S.A.
    • Journal of Power Electronics
    • /
    • 제9권2호
    • /
    • pp.207-214
    • /
    • 2009
  • This paper presents a modem approach for speed control of a PMSM using the Particle Swarm Optimization (PSO) algorithm to optimize the parameters of the PI-Controller. The overall system simulated under various operating conditions and an experimental setup is prepared. The use of PSO as an optimization algorithm makes the drive robust, with faster dynamic response, higher accuracy and insensitive to load variation. Comparison between different controllers is achieved, using a PI controller which is tuned by two methods, firstly manually and secondly using the PSO technique. The system is tested under variable operating conditions. Implementation of the experimental setup is done. The simulation results show good dynamic response with fast recovery time and good agreement with experimental controller.

The Inlet Shape Optimization of Aftertreatment System for Diesel Engine with Taguchi Method (다꾸치 방법을 이용한 디젤엔진용 후처리시스템의 입구부 형상 최적화)

  • Jung, Jong-Hwa;Kim, Jong-Hag;Kim, Sang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제20권5호
    • /
    • pp.145-151
    • /
    • 2012
  • New design of catalytic converter is proposed by optimization of DFSS (Design For Six Sigma) and DOE (Design Of Experiment) method which is based on taguchi matrix. As a result of the optimization of design of catalytic converter, this paper classifies Exhaust-downpipe shapes with 3 parameters to increase flow velocity uniformity of front catalytic substrate face from CFD results. after finishing with L9 Taguchi test matrix, it can be found the main effect of each design parameter of concept model, and optimal design level. in conclusion, it can be increase flow uniformity from 0.60 upto 0.80 with optimal diffuser shape for Turbo-charger.

A Hybrid Genetic Ant Colony Optimization Algorithm with an Embedded Cloud Model for Continuous Optimization

  • Wang, Peng;Bai, Jiyun;Meng, Jun
    • Journal of Information Processing Systems
    • /
    • 제16권5호
    • /
    • pp.1169-1182
    • /
    • 2020
  • The ant colony optimization (ACO) algorithm is a classical metaheuristic optimization algorithm. However, the conventional ACO was liable to trap in the local minimum and has an inherent slow rate of convergence. In this work, we propose a novel combinatorial ACO algorithm (CG-ACO) to alleviate these limitations. The genetic algorithm and the cloud model were embedded into the ACO to find better initial solutions and the optimal parameters. In the experiment section, we compared CG-ACO with the state-of-the-art methods and discussed the parameter stability of CG-ACO. The experiment results showed that the CG-ACO achieved better performance than ACOR, simple genetic algorithm (SGA), CQPSO and CAFSA and was more likely to reach the global optimal solution.

Development of CFD Based Stern Form Optimization Method (CFD 를 이용한 선미선형 최적화 기법 개발)

  • Kim, Hee-Jung;Chun, Ho-Hwan;Choi, Hee-Jong
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제44권6호
    • /
    • pp.564-571
    • /
    • 2007
  • In the present study, stern form optimization has been carried out using computational fluid dynamics (CFD) techniques. The viscous pressure drag has been minimized to optimize stern shape. Parametric modification function has been used to modify the shape of the hull. By the use of the parametric modification function and algebraic scheme to grid manipulation, the initial ship geometry was easily deformed according to change of design parameters. For purpose of illustration, KRISO 319K VLCC (KVLCC) is chosen for example ship to demonstrate stern form optimization. The numerical results indicate that the optimized hull yields a reduction in viscous resistance.

Research on theoretical optimization and experimental verification of minimum resistance hull form based on Rankine source method

  • Zhang, Bao-Ji;Zhang, Zhu-Xin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권5호
    • /
    • pp.785-794
    • /
    • 2015
  • To obtain low resistance and high efficiency energy-saving ship, minimum total resistance hull form design method is studied based on potential flow theory of wave-making resistance and considering the effects of tail viscous separation. With the sum of wave resistance and viscous resistance as objective functions and the parameters of B-Spline function as design variables, mathematical models are built using Nonlinear Programming Method (NLP) ensuring the basic limit of displacement and considering rear viscous separation. We develop ship lines optimization procedures with intellectual property rights. Series60 is used as parent ship in optimization design to obtain improved ship (Series60-1) theoretically. Then drag tests for the improved ship (Series60-1) is made to get the actual minimum total resistance hull form.

Comparison of Evolutionary Computation for Power Flow Control in Power Systems (전력계통의 전력조류제어를 위한 진화연산의 비교)

  • Lee, Sang-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • 제54권2호
    • /
    • pp.61-66
    • /
    • 2005
  • This paper presents an unified method which solves real and reactive power dispatch problems for the economic operation of power systems using evolutionary computation such as genetic algorithms(GA), evolutionary programming(EP), and evolution strategy(ES). Many conventional methods to this problem have been proposed in the past, but most of these approaches have the common defect of being caught to a local minimum solution. The proposed methods, applied to the IEEE 30-bus system, were run for 10 other exogenous parameters and composed of P-optimization module and Q-optimization module. Each simulation result, by which evolutionary computations are compared and analyzed, shows the possibility of applications of evolutionary computation to large scale power systems.

Performance Enhancement of Speaker Identification in Noisy Environments by Optimization Membership Function Based on Particle Swarm (Particle Swarm 기반 최적화 멤버쉽 함수에 의한 잡음 환경에서의 화자인식 성능향상)

  • Min, So-Hee;Song, Min-Gyu;Na, Seung-You;Kim, Jin-Young
    • Speech Sciences
    • /
    • 제14권2호
    • /
    • pp.105-114
    • /
    • 2007
  • The performance of speaker identifier is severely degraded in noisy environments. A study suggested the concept of observation membership for enhancing performances of speaker identifier with noisy speech [1]. The method scaled observation probabilities of input speech by observation identification values decided by SNR. In the paper [1], the authors suggested heuristic parameter values for membership function. In this paper we attempt to apply particle swarm optimization (PSO) for obtaining the optimal parameters for speaker identification in noisy environments. With the speaker identification experiments using the ETRI database we prove that the optimization approach can yield better performance than using only the original membership function.

  • PDF

The Stacking Sequence Optimization of Stiffened Laminated Curved Panels with Different Loading and Stiffener Spacing

  • Kim Cheol;Yoon In-Se
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1541-1547
    • /
    • 2006
  • An efficient procedure to obtain the optimal stacking sequence and the minimum weight of stiffened laminated composite curved panels under several loading conditions and stiffener layouts has been developed based on the finite element method and the genetic algorithm that is powerful for the problem with integer variables. Often, designing composite laminates ends up with a stacking sequence optimization that may be formulated as an integer programming problem. This procedure is applied for a problem to find the stacking sequence having a maximum critical buckling load factor and the minimum weight. The object function in this case is the weight of a stiffened laminated composite shell. Three different types of stiffener layouts with different loading conditions are investigated to see how these parameters influence on the stacking sequence optimization of the panel and the stiffeners. It is noticed from the results that the optimal stacking sequence and lay-up angles vary depending on the types. of loading and stiffener spacing.