• Title/Summary/Keyword: Parameters Optimization

Search Result 3,253, Processing Time 0.041 seconds

An improved particle swarm optimizer for steel grillage systems

  • Erdal, Ferhat;Dogan, Erkan;Saka, Mehmet Polat
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.513-530
    • /
    • 2013
  • In this paper, an improved version of particle swarm optimization based optimum design algorithm (IPSO) is presented for the steel grillage systems. The optimum design problem is formulated considering the provisions of American Institute of Steel Construction concerning Load and Resistance Factor Design. The optimum design algorithm selects the appropriate W-sections for the beams of the grillage system such that the design constraints are satisfied and the grillage weight is the minimum. When an improved version of the technique is extended to be implemented, the related results and convergence performance prove to be better than the simple particle swarm optimization algorithm and some other metaheuristic optimization techniques. The efficiency of different inertia weight parameters of the proposed algorithm is also numerically investigated considering a number of numerical grillage system examples.

Utilizing Soft Computing Techniques in Global Approximate Optimization (전역근사최적화를 위한 소프트컴퓨팅기술의 활용)

  • 이종수;장민성;김승진;김도영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.449-457
    • /
    • 2000
  • The paper describes the study of global approximate optimization utilizing soft computing techniques such as genetic algorithms (GA's), neural networks (NN's), and fuzzy inference systems(FIS). GA's provide the increasing probability of locating a global optimum over the entire design space associated with multimodality and nonlinearity. NN's can be used as a tool for function approximations, a rapid reanalysis model for subsequent use in design optimization. FIS facilitates to handle the quantitative design information under the case where the training data samples are not sufficiently provided or uncertain information is included in design modeling. Properties of soft computing techniques affect the quality of global approximate model. Evolutionary fuzzy modeling (EFM) and adaptive neuro-fuzzy inference system (ANFIS) are briefly introduced for structural optimization problem in this context. The paper presents the success of EFM depends on how optimally the fuzzy membership parameters are selected and how fuzzy rules are generated.

  • PDF

Design Optimization of Ball Grid Array Packaging by the Taguchi Method

  • Kim, Yeong-K.;Kim, Jae-chang;Choi, Joo-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.67-72
    • /
    • 2010
  • In this paper, a design optimization of ball grid array packaging geometry is studied based on the Taguchi method, which allowed robust design by considering the variance of the input parameters during the optimization process. Molding compound and substrate were modeled as viscoelastic, and finite element analyses were performed to calculate the strain energy densities of the eutectic solder balls. Six quality factors of the dimensions of the packaging geometry were chosen as control factors. After performing noise experiments to determine the dominant factors, main experiments were conducted to find the optimum packaging geometry. Then the strain energy densities between the original and optimized geometries were compared. It was found that the effects of the packaging geometry on the solder ball reliability were significant, and more than 40% of the strain energy density was reduced by the geometry optimization.

Design Optimization of Axial Flow Compressor Blades with Three-Dimensional N avier-Stokes Solver

  • Lee, Sang-Yun;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.1005-1012
    • /
    • 2000
  • Numerical optimization techniques combined with a three-dimensional thin-layer Navier-Stokes solver are presented to find an optimum shape of a stator blade in an axial compressor through calculations of single stage rotor-stator flow. Governing differential equations are discretized using an explicit finite difference method and solved by a multi-stage Runge-Kutta scheme. Baldwin-Lomax model is chosen to describe turbulence. A spatially-varying time-step and an implicit residual smoothing are used to accelerate convergence. A steady mixing approach is used to pass information between stator and rotor blades. For numerical optimization, searching direction is found by the steepest decent and conjugate direction methods, and the golden section method is used to determine optimum moving distance along the searching direction. The object of present optimization is to maximize efficiency. An optimum stacking line is found to design a custom-tailored 3-dimensional blade for maximum efficiency with the other parameters fixed.

  • PDF

Robust EOQ Models with Decreasing Cost Functions (감소하는 비용함수를 가진 Robust EOQ 모형)

  • Lim, Sung-Mook
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.2
    • /
    • pp.99-107
    • /
    • 2007
  • We consider (worst-case) robust optimization versions of the Economic Order Quantity (EOQ) model with decreasing cost functions. Two variants of the EOQ model are discussed, in which the purchasing costs are decreasing power functions in either the order quantity or demand rate. We develop the corresponding worst-case robust optimization models of the two variants, where the parameters in the purchasing cost function of each model are uncertain but known to lie in an ellipsoid. For the robust EOQ model with the purchasing cost being a decreasing function of the demand rate, we derive the analytical optimal solution. For the robust EOQ model with the purchasing cost being a decreasing function of the order quantity, we prove that it is a convex optimization problem, and thus lends itself to efficient numerical algorithms.

Torque Ripple Minimization of PMSM Using Parameter Optimization Based Iterative Learning Control

  • Xia, Changliang;Deng, Weitao;Shi, Tingna;Yan, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.425-436
    • /
    • 2016
  • In this paper, a parameter optimization based iterative learning control strategy is presented for permanent magnet synchronous motor control. This paper analyzes the mechanism of iterative learning control suppressing PMSM torque ripple and discusses the impact of controller parameters on steady-state and dynamic performance of the system. Based on the analysis, an optimization problem is constructed, and the expression of the optimal controller parameter is obtained to adjust the controller parameter online. Experimental research is carried out on a 5.2kW PMSM. The results show that the parameter optimization based iterative learning control proposed in this paper achieves lower torque ripple during steady-state operation and short regulating time of dynamic response, thus satisfying the demands for both steady state and dynamic performance of the speed regulating system.

Feed Optimization for High-Efficient Machining in Turning Process (선삭 공정에서의 고능률 가공을 위한 이송량의 최적화)

  • Kang, You-Gu;Cho, Jae-Wan;Kim, Seok-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1338-1343
    • /
    • 2007
  • High-efficient machining, which means cutting a part in the least amount of time, is the most effective tool to improve productivity. In this study, a new feed optimization method based on the cutting power regulation was proposed to realize the high-efficient machining in turning process. The cutting area was evaluated by using the Boolean intersection operation between the cutting tool and workpiece. And the cutting force and power were predicted from the cutting parameters such as feed, depth of cut, spindle speed, specific cutting force, and so on. Especially, the reliability of the proposed optimization method was validated by comparing the predicted and measured cutting forces. The simulation results showed that the proposed optimization method could effectively enhance the productivity in turning process.

  • PDF

Automated flight control system design using multi-objective optimization (다목적 최적화를 이용한 비행제어계 설계 자동화)

  • Ryu, Hyuk;Tak, Min-Je
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1296-1299
    • /
    • 1996
  • This paper proposes a design automation method for the flight control system of an aircraft based on optimization. The control system design problem which has many specifications is formulated as multi-objective optimization problem. The solution of this optimization problem should be considered in terms of Pareto-optimality. In this paper, we use an evolutionary algorithm providing numerous Pareto-optimal solutions. These solutions are given to a control system designer and the most suitable solution is selected. This method decreases tasks required to determine the control parameters satisfying all specifications. The design automation of a flight control system is illustrated through an example.

  • PDF

Optimization of Frame Structures with Natural Frequency Constraints (고유진동수 제약조건을 고려한 프레임 구조물의 최적화)

  • Kim, Bong-Ik;Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.109-113
    • /
    • 2010
  • We present the minimum weight optimum design of cross sectional for frame structures subject to natural frequency. The optimum design in this paper employ discrete and continuous design variables and Genetic Algorithms. In this paper, Genetic Algorithms is used in optimization process, and be used the method of Elitism and penalty parameters in order to improved fitness in the reproduction process. For 1-Bay 2-Story frame structure, in examples, continuous and discrete design variables are used, and W-section (No.1~No.64), from AISC, discrete data are used in discrete optimization. In this case, Exhaustive search are used for finding global optimum. Continuous variables are used for 1-Bay 7-Story frame structure. Two typical frame structure optimization examples are employed to demonstrate the availability of Genetic Algorithms for solving minimum weight optimum of frame structures with fundamental and multi frequency.

Optimal Design of Magnetic Levitation Controller Using Advanced Teaching-Learning Based Optimization (개선된 수업-학습기반 최적화 알고리즘을 이용한 자기부상 제어기의 최적 설계)

  • Cho, Jae-Hoon;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.90-98
    • /
    • 2015
  • In this paper, an advanced teaching-learning based optimization(TLBO) method for the magnetic levitation controller of Maglev transportation system is proposed to optimize the control performances. An attraction-type levitation system is intrinsically unstable and requires a delicate control. It is difficult to completely satisfy the desired performance through the methods using conventional methods and intelligent optimizations. In the paper, we use TLBO and clonal selection algorithm to choose the optimal control parameters for the magnetic levitation controller. To verify the proposed algorithm, we compare control performances of the proposed method with the genetic algorithm and the particle swarm optimization. The simulation results show that the proposed method is more effective than conventional methods.