• Title/Summary/Keyword: Parameters Optimization

Search Result 3,253, Processing Time 0.03 seconds

The Optimization of Output Characteristics with High Repetition Rate Pulsed $CO_2$ Laser Using SMPS (SMPS 방식의 고반복 펄스형 $CO_2$레이저의 출력특성 최적화)

  • Lee, D.H.;Chung, H.J.;Kim, D.W.;Kim, W.Y.;Kim, H.J.;Cho, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2192-2194
    • /
    • 1999
  • In this study, We have accomplished a new approach to develope a cheap and compact pulsed $CO_2$ laser system. We used a fast SCR as switching device instead of a thyatron in the pulsed power supply. Using the Pulse transformer, energy in the condenser is tranferred to the secondary, electrodes of discharge tube, from the primary. An axial and water cooled type was adopted as the laser cavity. The laser performance characteristics as various parameters, such as gas pressure and pulse repetition rate, have been investigated. As a result, the maxium laser output was 12.3[W] at a pulse repetition rate of 120[pps] and a filling pressure of 12[Torr].

  • PDF

A Study on the Field Ring of High Voltage Characteristics Improve for the Power Semiconductor (전력반도체 고내압 특성 향상을 위한 필드링 최적화 연구)

  • Nam, Tae-Jin;Jung, Eun-Sik;Jung, Hun-Suk;Kim, Sung-Jong;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.165-169
    • /
    • 2012
  • Power semiconductor devices are widely used as high voltage applications to inverters and motor drivers, etc. The blocking voltage is one of the most important parameters for power semiconductor devices. And cause of junction curvature effects, the breakdown voltage of the device edge and device unit cells was found to be lower than the 'ideal' breakdown voltage limited by the semi-infinite junction profile. In this paper, Propose the methods for field ring design by DOE (Design of Experimentation). So The field ring can be improve for breakdown voltage and optimization.

Gaussian Optimization of Vocabulary Recognition Clustering Model using Configuration Thread Control (형상 형성 제어를 이용한 어휘인식 공유 모델의 가우시안 최적화)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • In continuous vocabulary recognition system by probability distribution of clustering method has used model parameters of an advance estimate to generated each contexts for phoneme data surely needed but it has it's bad points of gaussian model the accuracy unsecure of composed model for phoneme data. To improve suggested probability distribution mixed gaussian model to optimized that phoneme data search supported configuration thread system. This paper of configuration thread system has used extension facet classification user phoneme configuration thread information offered gaussian model the accuracy secure. System performance as a result of represent vocabulary dependence recognition rate of 98.31%, vocabulary independence recognition rate of 97.63%.

A SMA-based morphing flap: conceptual and advanced design

  • Ameduri, Salvatore;Concilio, Antonio;Pecora, Rosario
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.555-577
    • /
    • 2015
  • In the work at hand, the development of a morphing flap, actuated through shape memory alloy load bearing elements, is described. Moving from aerodynamic specifications, prescribing the morphed shape enhancing the aerodynamic efficiency of the flap, a suitable actuation architecture was identified, able to affect the curvature. Each rib of the flap was split into three elastic elements, namely "cells", connected each others in serial way and providing the bending stiffness to the structure. The edges of each cell are linked to SMA elements, whose contraction induces rotation onto the cell itself with an increase of the local curvature of the flap airfoil. The cells are made of two metallic plates crossing each others to form a characteristic "X" configuration; a good flexibility and an acceptable stress concentration level was obtained non connecting the plates onto the crossing zone. After identifying the main design parameters of the structure (i.e. plates relative angle, thickness and depth, SMA length, cross section and connections to the cell) an optimization was performed, with the scope of enhancing the achievable rotation of the cell, its ability in absorbing the external aerodynamic loads and, at the same time, containing the stress level and the weight. The conceptual scheme of the architecture was then reinterpreted in view of a practical realization of the prototype. Implementation issues (SMA - cells connection and cells relative rotation to compensate the impressed inflection assuring the SMA pre-load) were considered. Through a detailed FE model the prototype morphing performance were investigated in presence of the most severe load conditions.

Crack identification in post-buckled beam-type structures

  • Moradi, Shapour;Moghadam, Peyman Jamshidi
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1233-1252
    • /
    • 2015
  • This study investigates the problem of crack detection in post-buckled beam-type structures. The beam under the axial compressive force has a crack, assumed to be open and through the width. The crack, which is modeled by a massless rotational spring, divides the beam into two segments. The crack detection is considered as an optimization problem, and the weighted sum of the squared errors between the measured and computed natural frequencies is minimized by the bees algorithm. To find the natural frequencies, the governing nonlinear equations of motion for the post-buckled state are first derived. The solution of the nonlinear differential equations of the two segments consists of static and dynamic parts. The differential quadrature method along with an arc length strategy is used to solve the static part, while the same method is utilized for the solution of the linearized dynamic part and the extraction of the natural frequencies of the cracked beam. The investigation includes several numerical as well as experimental case studies on the post-buckled simply supported and clamped-clamped beams having open cracks. The results show that several parameters such as the amount of applied compressive force and boundary conditions influences the outcome of the crack detection scheme. The identification results also show that the crack position and depth can be predicted well by the presented method.

Optimized Design of the Head restraint according the regional seat safety assessment (국가별 좌석 안전성 평가 방법에 따른 머리지지대 최적화 설계)

  • Yoo, Hyukjin;Yim, Jonghyun;Yoon, Ilsung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.45-50
    • /
    • 2013
  • The whiplash Injuries due to rear collision occur frequently. As result, in many countries, seat performance is being assessed and developed to improve head whiplash injury in rear collision of passenger car. This study compares whiplash assessment methods in each country. Using the DFSS(Design for Six Sigma) method, the correlation between influence parameters of head restraints and whiplash injury criteria is analyzed. Four control factors are used in this study. And total 11 whiplash injury criteria from NCAP(New Car Assessment Program) of Korea, Europe, China and IIHS(Insurance Institute for Highway Safety) of USA are used for output response. By the experimental design, L9 orthogonal coordinate system is configured and is tested by sled test equipment, twice. By using average assay value and ANOVA, the correlation between control factors and injury criteria has been comprehended. Optimization design of head restraint according the regional seat safety assessment was derived through the correlation.

Design and Optimization of Glow Discharge Atomic Absorption Spectrometry System (글로우방전 원자흡수시스템의 구성 및 최적화에 관한 연구)

  • Kim, Hyo Jin;Jang, Hye Jin;Lee, Gae Ho;Jo, Jeong Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.3
    • /
    • pp.214-220
    • /
    • 1994
  • A glow discharge atomic absorption system for the direct analysis of conducting solid samples has been designed and constructed. An arrestor made of machinable ceramic which is a main component for confining the discharge between cathode and anode is modified to have a better stability in discharge. Discharge voltage or current, shape of arrestor, pressure, and gas flow rate can be controlled by an ADC/DAC board with a personal computer. The effect of discharge parameters such as discharge voltage, pressure, and gas flow rate on the sample loss rate, absorbance, and the surface morphology of sample by SEM has been studied to find optimum discharge conditions.

  • PDF

Color Stabilization of Low Toxic Antimicrobial Polypropylene/Poly(hexamethylene guanidine) Phosphate Blends by Taguchi Technique

  • Lee, Sang-Mook;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.411-416
    • /
    • 2009
  • The color stabilization of antimicrobial blends was studied by using poly(hexamethylene guanidine) phosphate (PHMG) as a highly efficient biocidal and nontoxic agent. The Taguchi method was used to determine the optimum conditions for the blending of PHMG in polypropylene (PP) matrix. To improve the yellowing phenomena, two kinds of stabilizer were used together: tetrakis[methylene(3,5-di-t-butyl-4-hydroxyhydrocinnamate)](IN1010) from phenol and tris(2,4-di-t-butylphenylphosphite) (IF168) from phosphorus. According to blend composition and mixing condition, six factors were chosen, with five levels being set for each factor. The orthogonal array was selected as the most suitable for fabricating the experimental design, L25, with 6 columns and 25 variations. The-smaller-the-better was used as an optimization criterion. The optimum conditions for these parameters were 10 phr for PHMG, 2 phr for IN1010, 1 phr for IF168, 10 min for mixing time, $210^{\circ}C$ for mixing temperature, and 30 rpm for rotation speed. Under these conditions, the yellowness index of the blend was 1.52. The processibility of the blends was investigated by Advanced Rheometric Expansion System (ARES). The blend with 0.5 w% PHMG content, diluted with PP, exhibited an antimicrobial characteristic in the shake flask method.

Statistical Analysis of Cutting Force for End Milling with Different Cutting Tool Materials (공구재종에 따른 엔드밀 가공의 절삭력에 관한 통계적해석)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.86-91
    • /
    • 2016
  • End milling is an important and common machining operation because of its versatility and capability to produce various profiles and curved surfaces. This paper presents an experimental study of the cutting force variations in the end milling of SM25C with HSS(high speed steel) and carbide tool. This paper involves a study of the Taguchi design application to optimize cutting force in a end milling operation. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. This study included feed rate, spindle speed and depth of cut as control factors, and the noise factors were different cutting tool in the same specification. An orthogonal array of $L_9(3^3)$ of ANOVA analyses were carried out to identify the significant factors affecting cutting force, and the optimal cutting combination was determined by seeking the best cutting force and signal-to-noise ratio. Finally, confirmation tests verified that the Taguchi design was successful in optimizing end milling parameters for cutting force.

Incremental Sheet Forming of Complex Geometry Shape and Its Optimization Using FEM Analysis (복잡한 형상제품의 인크리멘탈 성형과 FEM을 이용한 공정 최적화)

  • Nguyen, D.T.;Park, J.G.;Lee, H.J.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.207-212
    • /
    • 2009
  • In order to optimize the press formability of incremental sheet forming for complex shape (e.g human face), a combination of both CAM and FEM simulation, is implemented and evaluated from the histories of stress and strain value by means of finite element analysis. Here, the results, using ABAQUS/Explicit finite element code, are compared with fracture limit curve (FLC) in order to predict and optimize the press formability by changing parameters of tool radius and tool down-step according to the orthogonal array of Taguchi's method. Firstly, The CAM simulation is used to create cutter location data (CL data). This data are then calculated, modified and exported to the input file format required by ABAQUS through using MATLAB programming. The FEM results are implemented for negative incremental sheet forming and then investigate by experiment.

  • PDF