• Title/Summary/Keyword: Parameterized

Search Result 301, Processing Time 0.033 seconds

Parametric model for the dielectric function of InGaAs alloy films (Parametric model을 이용한 InGaAs 박막의 유전함수 연구)

  • 인용섭;김태중;최재규;김영동
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.20-24
    • /
    • 2003
  • We Performed the modeling of the dielectric functions of InGaAs by using the parametric semiconductor model. Parametric model describes the analytic dielectric function as the summation of several energy-bounded Gaussian-broadened polynomials and provides a reasonably well parameterized function which can accurately reproduce the optical constants of InGaAs materials. We obtained the values of fitting parameters of an arbitrary composition $\chi$ through the parametric model. And then, from these parameters we could obtain the unknown dielectric functions of InGaAs alloy films ($0\leq\chi\leq1$).

Development of a bridge-specific fragility methodology to improve the seismic resilience of bridges

  • Dukes, Jazalyn;Mangalathu, Sujith;Padgett, Jamie E.;DesRoches, Reginald
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.253-261
    • /
    • 2018
  • This article details a bridge-specific fragility method developed to enhance the seismic design and resilience of bridges. Current seismic design processes provide guidance for the design of a bridge that will not collapse during a design hazard event. However, they do not provide performance information of the bridge at different hazard levels or due to design changes. Therefore, there is a need for a supplement to this design process that will provide statistical information on the performance of a bridge, beyond traditional emphases on collapse prevention. This article proposes a bridge-specific parameterized fragility method to enable efficient estimation of various levels of damage probability for alternative bridge design parameters. A multi-parameter demand model is developed to incorporate bridge design details directly in the fragility estimation. Monte Carlo simulation and Logistic regression are used to determine the fragility of the bridge or bridge component. The resulting parameterized fragility model offers a basis for a bridge-specific design tool to explore the influence of design parameter variation on the expected performance of a bridge. When used as part of the design process, these tools can help to transform a prescriptive approach into a more performance-based approach, efficiently providing probabilistic performance information about a new bridge design. An example of the method and resulting fragility estimation is presented.

BIM-enabled Quantitative Indicators for Analyzing Building Circulation in Early Phase of Design (설계초기 동선 분석을 위한 BIM기반 정량 평가지표 및 평가체계에 관한 연구)

  • Shin, Jaeyoung;Lee, Jin-Kook
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.4
    • /
    • pp.147-155
    • /
    • 2016
  • In order to ensure a certain level of the quality of design, standardized evaluation indicators are being used as an objective criterion. Even though the evaluation indicators are quantifiable, limitations such as inefficiency and inconsistency caused by manual task in the evaluation process still have been found. BIM (Building Information Modeling) technology that is commonly adopted in architectural design process provides an environment which enables us to figure out a building model to be interpreted quantitatively with the basis of the building information model. It supports quantitative, consistent, accurate and quick evaluations so as to improve quality of design even in the initial design phase. This paper aims to establish BIM-enabled quantitative indicators and an evaluation framework to analyze building circulation even in early phase of design. The indicators are composed of 4 types (relative distance, accessibility, simplicity, pedestrian friendliness) and 7 sub-types. The evaluation framework is the process to derive Parameterized Path Value (PPV) as weighting on each indicator. For demonstrating the scalability of the suggested evaluation indicators and the framework, the authors implemented an evaluation tool and a case study has been carried out by using an actual building remodel project.

Reliability Evaluation Through Moisture Sorption Characterization of Electronic Packaging Materials (전자 패키징 소재의 수착 특성화를 통한 신뢰성 평가)

  • Park, Heejin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1151-1158
    • /
    • 2013
  • Knowledge of the moisture sorption properties of a material is essential for optimal material development and analysis of the delamination failure caused by vapor pressure at the interlayer during the manufacturing process of integrated packaging devices. In this paper, both temperature dependent absorption and desorption properties according to temperature and humidity model are parameterized and the effects of water activities and temperature are discussed. The activation energy obtained from the parameterized diffusivity determines the acceleration factor for the equivalency of moisture sorption levels, which enables the effect of moisture diffusivity on the equivalent elapsed testing time required for evaluating the reliable life time to be estimated. The acceleration factor evaluated at the reliability testing standard of the flexible packaging module is exampled.

Combustion Characteristics and Criterion of Quenching Condition in Micro Combustor Parameterized by Initial Pressure and Fuel in the Combustor (초기 압력과 연료특성에 따른 마이크로 연소기 내에서의 연소 특성 및 소염 조건 변화)

  • Na, Han-Bee;Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.55-62
    • /
    • 2005
  • Combustion Characteristics and quenching criteria of micro combustor in various condition was exploited experimentally. Two different gases were used, and various geometric matrixes were considered to figure out quenching characteristic of micro combustor. The micro combustor studied in this study was constant volume, and has cylindrical shape. Geometric parameter of combustor was defined to be combustor height and diameter. The effect of height was exploited parametrically as 1 mm, 2mm and 3mm and the effect of diameter was parameterized to be 7.5mm and 15mm. Three different combustibles. (1) Stoichiometric mixture of methane and are, (2) Stoichiometric mixture of hydrogen and air and (3) Mixture of hydrogen and air with fuel stoichiometry of two were used. Pressure transition during combustion process was recovered. The ratio of maximum pressure to initial pressure responded favorably with the change of height of combustor and the initial pressure, the maximum pressure was also increased. The flame propagation was observed only when a specific condition was satisfied. From the experiment the condition that guarantees stable propagation of flame was tabulated. The tabulated results includes criteria of quenching according to combustor height, combustor diameter, species of fuel and initial pressure.

QoS-Guaranteed Slot Allocation Algorithm for Efficient Medium Access in HR-WPAN

  • Sung, Jung-Sik;Lee, Hyunjeong;Kang, Tae-Gyu;Huh, Jaedoo
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1242-1250
    • /
    • 2015
  • It is very important to provide a parameterized quality of service (QoS) using traffic specification (TSPEC), such as mean data rate, maximum burst size, and peak data rate, when packets from the application layer need to be transmitted with guaranteed services in a high-rate wireless personal area network (HR-WPAN). As medium resources are limited, the optimal medium time required for each device needs to be estimated to share the resources efficiently among devices. This paper proposes a variable-service interval-based resource allocation algorithm to efficiently make a reservation of medium resources based on a parameterized QoS. In other words, the proposed algorithm calculates the number of medium access slots (MASs) based on TSPEC, local resources, and local conditions and determines suitable locations for the MASs within a superframe to accommodate more devices. The simulation results show that the proposed algorithm can accommodate more devices and has greater than 10% resource allocation efficiency in an HR-WPAN compared to existing schemes.

Synthesis of Human Body Shape for Given Body Sizes using 3D Body Scan Data (3차원 스캔 데이터를 이용하여 임의의 신체 치수에 대응하는 인체 형상 모델 생성 방법)

  • Jang, Tae-Ho;Baek, Seung-Yeob;Lee, Kun-Woo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.364-373
    • /
    • 2009
  • In this paper, we suggest the method for constructing parameterized human body model which has any required body sizes from 3D scan data. Because of well developed 3D scan technology, we can get more detailed human body model data which allow to generate precise human model. In this field, there are a lot of research is performed with 3D scan data. But previous researches have some limitations to make human body model. They need too much time to perform hole-filling process or calculate parameterization of model. Even more they missed out verification process. To solve these problems, we used several methods. We first choose proper 125 3D scan data from 5th Korean body size survey of Size Korea according to age, height and weight. We also did post process, feature point setting, RBF interpolation and align, to parameterize human model. Then principal component analysis is adapted to the result of post processed data to obtain dominant shape parameters. These steps allow to reduce process time without loss of accuracy. Finally, we compare these results and statistical data of Size Korea to verify our parameterized human model.

NOVEL GEOMETRIC PARAMETERIZATION SCHEME FOR THE CERTIFIED REDUCED BASIS ANALYSIS OF A SQUARE UNIT CELL

  • LE, SON HAI;KANG, SHINSEONG;PHAM, TRIET MINH;LEE, KYUNGHOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.196-220
    • /
    • 2021
  • This study formulates a new geometric parameterization scheme to effectively address numerical analysis subject to the variation of the fiber radius of a square unit cell. In particular, the proposed mesh-morphing approach may lead to a parameterized weak form whose bilinear and linear forms are affine in the geometric parameter of interest, i.e. the fiber radius. As a result, we may certify the reduced basis analysis of a square unit cell model for any parameters in a predetermined parameter domain with a rigorous a posteriori error bound. To demonstrate the utility of the proposed geometric parameterization, we consider a two-dimensional, steady-state heat conduction analysis dependent on two parameters: a fiber radius and a thermal conductivity. For rapid yet rigorous a posteriori error evaluation, we estimate a lower bound of a coercivity constant via the min-θ method as well as the successive constraint method. Compared to the corresponding finite element analysis, the constructed reduced basis analysis may yield nearly the same solution at a computational speed about 29 times faster on average. In conclusion, the proposed geometric parameterization scheme is conducive for accurate yet efficient reduced basis analysis.

Decoupled Parametric Motion Synthesis Based on Blending (상.하체 분리 매개화를 통한 블렌딩 기반의 모션 합성)

  • Ha, Dong-Wook;Han, Jung-Hyun
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.439-444
    • /
    • 2008
  • The techniques, which locate example motions in abstract parameter space and interpolate them to generate new motion with given parameters, are widely used in real-time animation system for its controllability and efficiency However, as the dimension of parameter space increases for more complex control, the number of example motions for parameterization increases exponentially. This paper proposes a method that uses two different parameter spaces to obtain decoupled control over upper-body and lower-body motion. At each frame time, each parameterized motion space produces a source frame, which satisfies the constraints involving the corresponding body part. Then, the target frame is synthesized by splicing the upper body of one source frame onto the lower body of the other. To generate corresponding source frames to each other, we present a novel scheme for time-warping. This decoupled parameterization alleviates the problems caused by dimensional complexity of the parameter space and provides users with layered control over the character. However, when the examples are parameterized based on their upper body's spatial properties, the parameters of the examples are varied individually with every change of its lower body. To handle this, we provide an approximation technique to change the positions of the examples rapidly in the parameter space.

  • PDF

Typhoon Simulation with a Parameterized Sea Surface Cooling (모수화된 해면 냉각을 활용한 태풍 모의 실험)

  • Lee, Duho;Kwon, H. Joe;Won, Seong-Hee;Park, Seon Ki
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.97-110
    • /
    • 2006
  • This study investigates the response of a typhoon model to the change of the sea surface temperature (SST) throughout the model integration. The SST change is parameterized as a formulae of which the magnitude is given as a function of not only the intensity and the size but the moving speed of tropical cyclone. The formulae is constructed by referring to many previous observational and numerical studies on the SST cooling with the passage of tropical cyclones. Since the parameterized cooling formulae is based on the mathematical expression, the resemblance between the prescribed SST cooling and the observed one during the period of the numerical experiment is not complete nor satisfactory. The agreements between the prescribed and the observed SST even over the swath of the typhoon passage differ from case to case. Numerical experiments are undertaken with and without prescribing the SST cooling. The results with the SST cooling do not show clear evidence in improving the track prediction compared to those of the without-experiments. SST cooling in the model shows its swath along the incomplete simulated track so that the magnitude and the distribution of the sea surface cooling does not resemble completely with the observed one. However, we have observed a little improvement in the intensity prediction in terms of the central pressure of the tropical cyclone in some cases. In case where the model without the SST treatment is not able to yield a correct prediction of the filling of the tropical cyclone especially in the decaying stage, the pulling effect given by the SST cooling alleviates the over-deepening of the model so that the central pressure approaches toward the observed value. However, the opposite case when the SST treatment makes the prediction worse may also be possible. In general when the sea surface temperature is reduced, the amount of the sensible and the latent heat from the ocean surface become also reduced, which results in the weakening of the storms comparing to the constant SST case. It turns out to be the case also in our experiments. The weakening is realized in the central pressure, maximum wind, horizontal temperature gradient, etc.