• Title/Summary/Keyword: Parameter uncertainties

Search Result 546, Processing Time 0.023 seconds

Development of Water Supply System under Uncertainty

  • Chung, Gun-Hui;Kim, Tae-Woong;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2179-2183
    • /
    • 2009
  • As urbanization is progressed, the network for distributing water in a basin become complex due to the spatial expansion and parameter uncertainties of water supply systems. When a long range water supply plan is determined, the total construction and operation cost has to be evaluated with the system components and parameter uncertainties as many as possible. In this paper, the robust optimization approach of Bertsimas and Sim is applied in a hypothetical system to find a solution which remains feasible under the possible parameter uncertainties having the correlation effect between the uncertain coefficients. The system components to supply, treatment, and transport water are included in the developed water supply system and construction and expansion of the system is allowed for a long-range period. In this approach, the tradeoff between system robustness and total cost of the system is evaluated in terms of the degree of conservatism which can be converted to the probability of constraint violation. As a result, the degree of conservatism increases, the total cost is increased due to the installation of large capacity of treatment and transportation systems. The applied robust optimization technique can be used to determine a long-range water supply plan with the consideration of system failure.

  • PDF

Robust Optimal Bang-Bang Controller Using Lyapunov Robust Stability Condition (Lyapunov 강인 안정성 조건을 이용한 강인 최적 뱅뱅 제어기)

  • Park Young-Jin;Moon Seok-Jun;Park Youn-Sik;Lim Chae-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.411-418
    • /
    • 2006
  • There are mainly two types of bang-bang controllers for nominal linear time-invariant (LTI) system. Optimal bang-bang controller is designed based on optimal control theory and suboptimal bang-bang controller is obtained by using Lyapunov stability condition. In this paper, the suboptimal bang-bang control method is extended to LTI system involving both control input saturation and structured real parameter uncertainties by using Lyapunov robust stability condition. Two robust optimal bang-bang controllers are derived by minimizing the time derivative of Lyapunov function subjected to the limit of control input. The one is developed based on the classical quadratic stability(QS), and the other is developed based on the affine quadratic stability(AQS). And characteristics of the two controllers are compared. Especially, bounds of parameter uncertainties which theoretically guarantee robust stability of the two controllers are compared quantitatively for 1DOF vibrating system. Moreover, the validity of robust optimal bang-bang controller based on the AQS is shown through numerical simulations for this system.

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.

Implicit Treatment of Technical Specification and Thermal Hydraulic Parameter Uncertainties in Gaussian Process Model to Estimate Safety Margin

  • Fynan, Douglas A.;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.684-701
    • /
    • 2016
  • The Gaussian process model (GPM) is a flexible surrogate model that can be used for nonparametric regression for multivariate problems. A unique feature of the GPM is that a prediction variance is automatically provided with the regression function. In this paper, we estimate the safety margin of a nuclear power plant by performing regression on the output of best-estimate simulations of a large-break loss-of-coolant accident with sampling of safety system configuration, sequence timing, technical specifications, and thermal hydraulic parameter uncertainties. The key aspect of our approach is that the GPM regression is only performed on the dominant input variables, the safety injection flow rate and the delay time for AC powered pumps to start representing sequence timing uncertainty, providing a predictive model for the peak clad temperature during a reflood phase. Other uncertainties are interpreted as contributors to the measurement noise of the code output and are implicitly treated in the GPM in the noise variance term, providing local uncertainty bounds for the peak clad temperature. We discuss the applicability of the foregoing method to reduce the use of conservative assumptions in best estimate plus uncertainty (BEPU) and Level 1 probabilistic safety assessment (PSA) success criteria definitions while dealing with a large number of uncertainties.

Depth Control of an Autonomous Underwater Vehicle with System Uncertainties Based on Discrete Variable Structure System (이산 가변구조제어기를 이용한 자율무인잠수정의 심도제어)

  • 이판묵;홍석원;전봉환
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.169-179
    • /
    • 1997
  • This paper presents a discrete-time sliding mode control of an autonomous underwater vehicle with parameter uncertainties and long sample interval based on discrete variable structure system. Although conventional sliding mode montrol techniques are robust to system uncertainties, in the case of the system with long sample interval, the sliding control system reveals chattering phenomenon and even makes the system unstable. This paper considers the AUV which acquires position informations from a surface ship through an acoustic telemetry system with a certain discrete interval. The control system is designed on the basis of a Lyapunov function and a sufficient condition of the switching gain to make the system stable is give. Each component of the switching gain can be determined separately one another. The controller is robust to the uncertainties, and reaching condition of the control system is satisfied for any initial condition. This control law is a generalized form of the discrete sliding mode control and reduce the chattering problem considerably. Motion control of the AUV in the vertical plane shows the effectiveness of the proposed technique.

  • PDF

Robust $H^{\infty}$ control for parameter uncertain time-varying systems with time-varying delays in state and control input (파라미터 불확실성 시변 시간지연 시스템에 대한 견실 $H^{\infty}$ 제어)

  • 김기태;김종해;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.113-116
    • /
    • 1997
  • In this paper, we present a robust $H^{\infty}$ controller design method for parameter uncertain time-varying systems with disturbance and that have time-varying delays in both state and control. It is found that the problem shares the same formulation with the $H^{\infty}$ control problem for systems without uncertainty. Through a certain differential Riccati inequality approach, a class of stabilizing continuous controller is proposed. For parameter uncertainties, disturbance and time varying delays, proposed controllers the plant and guarantee an $H^{\infty}$ norm bound constraint on disturbance attenuation for all admissible uncertainties. Finally a numerical example is given to demonstrate the validity of the results.ts.

  • PDF

Robust Observer-based $H_\infty$ Controller Design Method for Singular Systems with Parameter Uncertainties (매개변수 불확실성을 가지는 특이시스템의 강인 관측기 기반 $H_\infty$ 제어기 설계방법)

  • Kim Jong-Hae;Ahn Seong-Joon;Ahn Seung-Joon;Oh Do-Chang;Chi Kyeong-Koo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.1
    • /
    • pp.11-16
    • /
    • 2005
  • This paper considers a robust observer-based H/sub ∞/ controller design method for singular systems with parameter uncertainties using an LMI condition. The sufficient condition for the existence of controller and the controller design method are presented by a perfect LMI condition in terms of all variables using singular value decomposition, Schur complement, and change of variables. Therefore, one of the main advantages is that a robust observer-based H/sub ∞/ controller can be established by solving one LMI condition compared with existing results. Numerical example is given to illustrate the effectiveness of the proposed controller design method.

Real Time Control for the Position and Velocity of Robot Manipulator With Parameter Uncertainties (不確實性을 고려한 로보트 매니퓰레이터의 位置 및 速度에 대한 實時間 制御)

  • Lee, Gang-Du;Kim, Gyeong-Nyeon;Han, Seong-Hyeon;Lee, Jin;Lee, Jong-Nyeon;Kim, Hwi-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.30-40
    • /
    • 1995
  • In this paper, it is proposed a robust control scheme for real time control of a robot manipulator with parameter uncertainties. The focus of this paper is a new approach of multivariable control schemes for an assembly robot manipulator to achieve the accurate trajectory tracking by joint angles. The proposed control scheme consists of a multivariable feedforward controller and feedback controller. In this control scheme, the feedback controller consists of proportional-derivative type and is designed by the pole placement method. The feedforward controller uses the inverse of the linealized model of robot manipulator dynamics. This feedback controller ensures that each joint enables to track any reference trajectory. The proposed robot controller scheme has a computational efficiency.

  • PDF

Experimental Study on Stability of Robust Saturation Controller (강인 포화 제어기의 안정성에 관한 실험적 연구)

  • Lim, Chae-Wook;Moon, Seok-Jun;Park, Youngjin;Park, Yun-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.207-213
    • /
    • 2006
  • In our previous research, we proposed a robust saturation controller which involves both control input saturation and structured real parameter uncertainties. This controller can analytically prescribed the upper and lower bounds of parameter uncertainties, and guarantee the closed-loop robust stability of the system in the presence of actuator's saturation. And the availability and the effectiveness of the proposed robust saturation controller were verified through numerical simulations. In this paper, we verify the robust stability of this controller through experimental tests. Expecially, we show unstable cases of other controllers in comparison with this controller. Experimental tests are carried out in the laboratory using a two-story test structure with a hydraulic-type active mass damper.

Sensorless IPMSM Control Based on an Extended Nonlinear Observer with Rotational Inertia Adjustment and Equivalent Flux Error Compensation

  • Mao, Yongle;Yang, Jiaqiang;Yin, Dejun;Chen, Yangsheng
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2150-2161
    • /
    • 2016
  • Mechanical and electrical parameter uncertainties cause dynamic and static estimation errors of the rotor speed and position, resulting in performance deterioration of sensorless control systems. This paper applies an extended nonlinear observer to interior permanent magnet synchronous motors (IPMSM) for the simultaneous estimation of the rotor speed and position. Two compensation methods are proposed to improve the observer performance against parameter uncertainties: an on-line rotational inertia adjustment approach that employs the gradient descent algorithm to suppress dynamic estimation errors, and an equivalent flux error compensation approach to eliminate static estimation errors caused by inaccurate electrical parameters. The effectiveness of the proposed control strategy is demonstrated by experimental tests.