• Title/Summary/Keyword: Parameter disturbance

Search Result 487, Processing Time 0.137 seconds

Repetitive learning method for trajectory control of robot manipulators using disturbance observer

  • Kim, Bong-Keun;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.99-102
    • /
    • 1996
  • A novel iterative learning control scheme comprising a unique feedforward learning controller and a disturbance observer is proposed. Disturbance observer compensates disturbance due to parameter variations, mechanical nonlinearities, unmodeled dynamics and external disturbances. The convergence and robustness of the proposed controller is proved by the method based on Lyapunov stability theorem. The results of numerical simulation are shown to verify the effectiveness of the proposed control scheme.

  • PDF

Output Feedback Sliding Mode Control System with Disturbance Observer for Rotational Inverted Pendulums (외란 관측기를 이용한 회전형 역진자 시스템의 출력 피드백 슬라이딩 모드 제어)

  • Lee, Gyu-Jun;Ha, Jong-Heon;Kim, Jong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.243-253
    • /
    • 2002
  • This paper presents the system modeling, analysis, and controller design and implementation for a rotational inverted pendulum system(RIPS), which is an under-actuated system and has the problem of unattainable angular velocity state. A sliding mode controller using the parameterization of both the hyperplane and the compensator fur output feedback is applied to the RIPS. Also, to improve the performance of the control system, a disturbance observer which estimates the disturbance, parameter variation, and some modeling errors of RIPS with less computational effort is used together. The results of simulation and experiment show that the proposed control system has superior performance for disturbance rejection and regulation at certain initial conditions.

Gain Scheduled Discrete Time Control for Disturbance Attenuation of Systems with Bounded Control Input (제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이산시간 이득 스케줄 제어)

  • Kang, Min-Sig;Yoon, Woo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • A new discrete time gain-scheduled control design is proposed to improve disturbance attenuation for systems with bounded control input under known disturbance maximum norm. The state feedback gains are scheduled according to the proximity of the state of the plant to the origin. The controllers are derived in the framework of linear matrix inequality(LMI) optimization. This procedure yields a linear time varying control structure that allows higher gain and hence higher performance controllers as the state moves closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition under the given disturbance maximum norm.

A New Robust Digital Sliding Mode Control with Disturbance Observer for Uncertain Discrete Time Systems

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.15 no.2
    • /
    • pp.149-156
    • /
    • 2011
  • In this paper, a new discrete variable structure controller based on a new sliding surface and discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed sliding surface. The discrete version of the disturbance observer is derived for the effective compensation of the effect of uncertainties and disturbances. A corresponding control input with the disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined sliding surface for guaranteeing the designed output in the sliding surface from any initial condition to the origin for all the parameter variations and disturbances. By using Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

Evaluation of Sample Quality for Marine Clay by Large Block Samples (대형블럭시료를 이용한 해성점토 시료의 품질 평가)

  • Kim, Jong-Kook;Yoon, Won-Sub;Kim, Ji-Hee;Chae, Young-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1004-1011
    • /
    • 2008
  • In this study, obtained large block sample and piston sample of marine clay in korea were performed unconfined compression and consolidation test. Soil properties of two type samples such as failure strain, between two parameter's ratio($E_{50}$ and $q_u$), and volumetric strain were used to evaluate sample disturbance. The result, large block samples show a low disturbance than piston samples. Therefore, we suggest new sample disturbance evaluated method through the relation of OCR and volumaric strain at shallow of marine clay in Korea and suggest new sample disturbance classified method by subdivided grade for failure strain of unconfined compression test.

  • PDF

A Study on the Influence of Q-filter on Disturbance Observer Controller for Electro-Magnetic Suspension Systems (자기부상시스템의 외란관측기 제어기에 Q 필터가 미치는 영향에 관한 연구)

  • Jeon, Chanyoung;Jang, Sohyun;Jo, Nam-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.104-110
    • /
    • 2015
  • The disturbance observer (DOB) controller has been widely used in various industrial applications since it is capable of achieving robust stability and disturbance rejection. In this paper, we study the effect of Q-filter on disturbance observer controller for Electro-Magnetic suspension (EMS) systems. We consider three Q-filters and analyze their effects on the robust stability against parameter uncertainties due to mass variation. Moreover, we investigate the influence of sensor noise for three Q-filters. According to our study, robust stability improves as the order of Q-filter decreases. On the other hand, the larger the order of Q-filter, the more the effect of sensor noise can be removed.

A Parameter Optimization Algorithm for Power System Stabilization (전력 계통 안정화를 위한 선재설계에 관한 연구)

  • 곽노홍;문영현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.8
    • /
    • pp.792-804
    • /
    • 1990
  • This paper describes an efficient optimization algorithm by calculating sensitivity function for power system stabilization. In power system, the dynamic performance of exciter, governor etc. following a disturbance can be presented by a nonlinear differential equation. Since a nonlinear equation can be linearized for small disturbances, the state equation is expressed by a system matrix with system parameters. The objective function for power system operation will be related to the system parameter and the initial state at the optimal control condition for control or stabilization. The object function sensitivity to the system parameter can be considered to be effective in selecting the optimal parameter of the system.

  • PDF

Optical Disk Drive Servo System Using Dual Disturbance Observer

  • Lee, Sang-Han;Jeong, Dong-Seul;Chung, Chung-Choo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2087-2092
    • /
    • 2005
  • Using disturbance observer (DOB) is effective in enhancing the performance of dynamic system in the presence of disturbances. Recently the definition of disturbance has been expanded to modeling uncertainty including parameter variation, internal disturbance. Various structures of DOB have been proposed to improve sensitivity of system for better disturbance rejection performance. However in the case of improvement of sensitivity function, it tends to bring poor transient response due to cross-coupling and phase lag. Furthermore it could be very sensitive to measurement noise due to increased peak of complementary sensitivity function. In this paper, a dual disturbance observer (Dual-DOB) is proposed to reduce the effect of such cross-coupling. It is possible for us to improve the sensitivity function with additional external DOB with hardly affecting complementary sensitivity function. Thus it is able to have robustness against measurement noise. Since we are able to design DOBs of internal and external loop independently, we could prevent transient response quality from degrading while improving the sensitivity function. The proposed Dual-DOB is applied to a commercial optical disk drive tracking servo system. The experimental result shows that the Dual-DOB is an effective method in rejecting the disturbance as well as improving the tracking performance.

  • PDF

PRECISION IDENTIFICATION OF ACTUATOR DISTURBANCE PARAMETER BY FREQUENCY COMPENSATION (주파수 보정법에 의한 구동기 외란 파라미터 정밀 결정)

  • Lee Hyunho;Cheon Dong-Ik;Oh Hwa-Suk
    • Bulletin of the Korean Space Science Society
    • /
    • 2005.04a
    • /
    • pp.138-142
    • /
    • 2005
  • A reaction wheel, an actuator for satellite attitude control, produces disturbance torque and force as well as its axial control torque. The disturbances have an influence on the pointing stability of high precision satellites. The measurement of disturbances for such a satellite, therefore, is necessary. The wheel's rotation, however, causes the vibration of the table and its vibration induces measurement errors, especially large near the resonance frequency of the Measurement table. For the purpose of overcoming these defects, a calibration method using frequency compensation is suggested in this paper. Disturbance parameters are identified from data examined by frequency compensation. Measurement frequency range can be expanded far higher than the resonance frequency, since the degradation of data accuracy caused by its vibration is well alleviated even in the resonance area.

  • PDF

A Nonlinear Speed Control for a Permanent Magnet Synchronous Motor Using a Simple Disturbance Estimation Technique (외란 관측기를 이용한 영구자석 동기전동기의 비선형 속도 제어)

  • 이나영;김경화;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.149-157
    • /
    • 2001
  • A nonlinear speed control for a permanent magnet synchronous motor (PMSM) using a simple disturbance estimation technique is presented. By using a feedback linearization scheme, the nonlinear motor model can be linearized in a controllable canonical form, and the desired speed dynamics can be obtained based on the linearized model. This technique, however, gives an undesirable output performance under the mismatch of the system parameters and load conditions. To cancel disturbance by parameter variation, the controller parameters will be estimated by using a disturbance observer theory where the disturbance torque and flux linkage are estimated. since only the two reduced order observers are used for the parameter estimations, the observer designs are considerably simple and the additional load for computation of the controller is negligibly small. The proposed control scheme is implemented on a PMSM using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF