• 제목/요약/키워드: Parameter disturbance

검색결과 487건 처리시간 0.033초

신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀속도제어 (Precision Speed Control of PMSM Using Neural Network Disturbance Observer and Parameter Compensator)

  • 고종선;이용재
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권10호
    • /
    • pp.573-580
    • /
    • 2002
  • This paper presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM(recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation and experiment, are shown in this paper.

상태 공간 외란관측기를 이용한 강인 제어기법 연구 (The study of Robust Control using a State-Space Disturbance Observer)

  • 조규남;정정주;이승희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.705-707
    • /
    • 2004
  • In this paper, we propose a robust control technique against parameter uncertainties as well as external disturbances. It is robust control scheme using discrete-time state space disturbance observer. It does not require disturbance modeling, plant inverse modeling and/or Q filter. In frequency domain, its performance is evaluated in terms of sensitivity and complementary sensitivity as well as gain and phase margin. Finally we discuss design criterion of state space disturbance observer considering its performance in frequency domain.

  • PDF

Nonlinear model predictive control of chemical reactors

  • Lee, Jongku;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.419-424
    • /
    • 1992
  • A robust nonlinear predictive control strategy using a disturbance estimator is presented. The disturbance estimator is comprised of two parts: one is the disturbance model parameter adaptation and the other is future disturbance prediction. RLSM(recurrsive least square method) with a forgetting factor is used to de the uncertain distance model parameters and for the future disturbance prediction, future process outputs and inputs projected by the process model are used. The simulation results for chemical reactors indicate that a substantial improvement in nonlinear predictive control performance is possible using the disturbance estimator.

  • PDF

파라미터 불확실성 시변 시간지연 시스템에 대한 견실 $H^{\infty}$ 제어 (Robust $H^{\infty}$ control for parameter uncertain time-varying systems with time-varying delays in state and control input)

  • 김기태;김종해;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.113-116
    • /
    • 1997
  • In this paper, we present a robust $H^{\infty}$ controller design method for parameter uncertain time-varying systems with disturbance and that have time-varying delays in both state and control. It is found that the problem shares the same formulation with the $H^{\infty}$ control problem for systems without uncertainty. Through a certain differential Riccati inequality approach, a class of stabilizing continuous controller is proposed. For parameter uncertainties, disturbance and time varying delays, proposed controllers the plant and guarantee an $H^{\infty}$ norm bound constraint on disturbance attenuation for all admissible uncertainties. Finally a numerical example is given to demonstrate the validity of the results.ts.

  • PDF

Robust Speed Control of PMSM with Fuzzy Gain Scheduling

  • Won, Tae-Hyun;Kim, Mun-Soo;Park, Han-Woong;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.111.1-111
    • /
    • 2001
  • In this paper, a robust speed control is proposed for Permanent Magnet Synchronous Motor system. PMSM without reduction gear has been widely used in high performance application such as robots and machine tools. It is well known that the control performance of the PMSM is very sensitive to load disturbance and system parameter variation. The idea of the proposed speed controller based on combination of sliding mode control with fuzzy gain scheduling. The sliding mode controller leads to fast system dynamics of slight sensitivity to the load disturbance and system parameter variations, the fuzzy gain scheduling mechanism reduces the chattering phenomenon. The simulation results have proved that the proposed control scheme provides a robust control performance under load disturbance and system parameter variation.

  • PDF

The Vibration Suppressible Method with Estimated Torsion Torque Feedback in Fuzzy Controller

  • Choo, Yeon-Gyu;Lee, Kwang-Seok;Kim, Hyun-Deok;Kim, Bong-Gi
    • Journal of information and communication convergence engineering
    • /
    • 제6권4호
    • /
    • pp.421-424
    • /
    • 2008
  • In torque transmission system, we must suppressed vibration for Accuracy characteristic response of motor, Therefore, vibration suppression factor is very important motor control. To suppress vibration, a various control method has been proposed. Specially, one method of vibration suppression used disturbance observer filter. This method is torsion torque passing disturbance observer filter. By the estimated torsion torque feedback, vibration can be suppressed. The CDM(coefficient diagram method) is used to design the filter and Proportional controller. But using coefficient diagram method, not adapted controller parameter in disturbance. For this solution, we used fuzzy controller for auto tuning controller parameter. We proved this approach is confirmed by simulation.

공압 매니퓰레이터의 강인 힘제어 (Robust Force Control of Pneumatic Manipulator)

  • 박정규;노리츠구토시로
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.540-552
    • /
    • 1996
  • In this paper, a compensation method of disturbance using a disturbance observer is proposed for a force control of a pneumatic robot manipulator. The generated torque by a pneumatic actuator can be estimated based on the pressure signals. The inner torque control system is constructed by feeding back the generated torque to improve the dynamic characteristics of the actuator. In order to reduce the influence of disturbances comprising friction torque, parameter variations of plant and environment and so on, the reaction torque control system is constructed with a disturbance observer which estimates the disturbances based on the reference input to the inner torque control system and the reaction torque sensed with a forced sensor. From some simulations and experiments, it is confirmed that the proposed control system is effective to improve the robustness for the friction torque and the parameter change of object in the force control of a pneumatic robot manupulator.

외란관측기를 갖는 SMC에 의한 DC모터의 강인한 속도제어 (Robust speed control for DC motor based on sliding mode with a disturbance observer)

  • 정태영
    • 수산해양기술연구
    • /
    • 제55권4호
    • /
    • pp.402-410
    • /
    • 2019
  • This paper deals with the disturbance observer (DOB) based sliding mode control (SMC) for a DC motor to control motor rotating speed precisely and to ensure strong robustness against disturbance including load torque and parameter variation. The reason of steady state error in speed on conventional SMC without DOB is analyzed in detail. Especially, the suggested DOB is designed to prevent measuring noise and harmonics caused by derivative operation on rotating speed. The control performance of the DOB based SMC is evaluated by the various simulations. The simulation results showed that the DOB based SMC had more robust performance than the SMC system without DOB. Especially, precise speed control was possible even though motor parameter variation and load torque was added to the system.

고속회전구동기의 힘 및 토크 외란 3차원 측정과 파라미터 추정 (Three Dimensional Measurements and Parameter Identification of Force and Torque Distmbances of High Speed Rotating Actuators)

  • 이현호;오화석;전동익
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.409-416
    • /
    • 2007
  • A momentum type actuator produces force and torque disturbances as well as its designed control torque. These disturbances are ones of the largest disturbance sources inside the spacecraft, which deteriorate the pointing stability of the high precision spacecraft. The measurement and analysis of actuator disturbances are therefore imperative for such a spacecraft, and thus a three dimensional torque measurement table has been developed for that purpose. The data acquired from the measurement table are processed in the frequency domain and displayed in the power spectral density(PSD). Through this process, disturbance model parameters are obtained and used for the attitude stability simulation. The process has been adopted for the disturbance measurement of the reaction wheel, and the validity of measurements and parameter identification procedure is verified.

시간지연 및 파라미터 불확실성을 갖는 선형시스템의 혼합 $H^{2}$/$H^{\infty}$ 제어기 설계 (Mixed $H^{2}$/$H^{\infty}$ controller design for linear system with time delay and parameter uncertainty)

  • 이갑래;정은태;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.560-564
    • /
    • 1996
  • A mixed H$^{2}$/$H^{\infty}$ controller design method for linear systems with time delay in all variables and parameter uncertainties in all system matrices is proposed. Robust $H^{\infty}$ performance and H$^{2}$ performance condition that accounts for model-matching of closed loop system and disturbance rejection is also derived. With expressing uncertain system with linear fractional transformation form, we transform the robust stability and performance problem to the H$^{2}$/$H^{\infty}$ optimization problem and design a mixed H$^{2}$/$H^{\infty}$ controller. Using the proposed method, mixed H$^{2}$/$H^{\infty}$ controller for underwater vehicle with time delay and parameter variations are designed. Simulations of a design example with hydrodynamic parameter variations and disturbance are presented to demonstrate the achievement of good robust performance.t performance.ance.

  • PDF