• 제목/요약/키워드: Parameter Uniform

검색결과 422건 처리시간 0.026초

Force density ratios of flexible borders to membrane in tension fabric structures

  • Asadi, H.;Hariri-Ardebili, M.A.;Mirtaheri, M.;Zandi, A.P.
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.555-563
    • /
    • 2018
  • Architectural fabrics membranes have not only the structural performance but also act as an efficient cladding to cover large areas. Because of the direct relationship between form and force distribution in tension membrane structures, form-finding procedure is an important issue. Ideally, once the optimal form is found, a uniform pre-stressing is applied to the fabric which takes the form of a minimal surface. The force density method is one of the most efficient computational form-finding techniques to solve the initial equilibrium equations. In this method, the force density ratios of the borders to the membrane is the main parameter for shape-finding. In fact, the shape is evolved and improved with the help of the stress state that is combined with the desired boundary conditions. This paper is evaluated the optimum amount of this ratio considering the curvature of the flexible boarders for structural configurations, i.e., hypar and conic membranes. Results of this study can be used (in the absence of the guidelines) for the fast and optimal design of fabric structures.

Prediction of chloride diffusion coefficient of concrete under flexural cyclic load

  • Tran, Van Mien;Stitmannaithum, Boonchai;Nawa, Toyoharu
    • Computers and Concrete
    • /
    • 제8권3호
    • /
    • pp.343-355
    • /
    • 2011
  • This paper presented the model to predict the chloride diffusion coefficient in tension zone of plain concrete under flexural cyclic load. The fictitious crack based analytical model was used together with the stress degradation law in cracked zone to predict crack growth of plain concrete beams under flexural cyclic load. Then, under cyclic load, the chloride diffusion, in the steady state and one dimensional regime, through the tension zone of the plain concrete beam, in which microcracks were formed by a large number of cycles, was simulated with assumptions of continuously straight crack and uniform-size crack. The numerical analysis in terms of the chloride diffusion coefficient, $D_{tot}$, normalized $D_{tot}$, crack width and crack length was issued as a function of the load cycle, N, and load level, SR. The nonlinear model as regarding with the chloride diffusion coefficient in tension zone and the load level was proposed. According to this model, the chloride diffusion increases with increasing load level. The predictions using model fit well with experimental data when we adopted suitable crack density and tortuosity parameter.

가습된 $N_2$/H$_2$혼합가스 분위기에서의 Kovar 산화 거동 (The Oxidation of Kovar in Humidified $N_2$/H$_2$ Atmosphere)

  • 김병수;김민호;김상우;최덕균;손용배
    • 마이크로전자및패키징학회지
    • /
    • 제8권2호
    • /
    • pp.1-7
    • /
    • 2001
  • 저열팽창성 금속인 Kovar표면을 유리와 접합하기에 적합한 spinel을 주상으로 하는 균일한 산화막을 형성할 수 있도록 $N_2/H_2$$H_2O$가 첨가된 분위기에서의 산화 거동에 대하여 조사하였다. Kovar 산화는 확산에 의해 지배되는 공정이며, 이때 산화 활성화 에너지는 31.61 kacl/mol 이었다. $600^{\circ}C$에서 열처리한 결과 spinel을 주상으로 하는 0.5 $mu extrm{m}$ 이하의 연속적이고 균일한 외부 산화막을 얻을 수 있었다. TEM 분석 결과 격자 상수가 7.9 $\AA$인 spinel 임을 확인할 수 있었다. 그러므로, 가습된 $N_2/H_2$분위기에서 산화한 Kovar는 유리와 접합에 적용 가능할 것으로 판단된다.

  • PDF

Structure and Magnetic Characterization of Core-Shell Fe@ZrO2 Nanoparticles Synthesized by Sol-Gel Process

  • Chaubey, Girija S.;Kim, Jin-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2279-2282
    • /
    • 2007
  • Highly crystalline, uniform Fe nanoparticles were successfully synthesized and encapsulated in zirconia shell using sol-gel process. Two different approaches have been employed for the coating of Fe nanoparticle with zirconia. The thickness of zirconia shell can be readily controlled by altering molar ratio of Fe nanoparticle core to zirconia precursor in the first case where as reaction time was found to be most effective parameter to controlled the shell thickness in the second method. The structure and magnetic properties of the ZrO2-coated Fe nanoparticles were studied. TEM and HRTEM images show a typical core/shell structure in which spherical α-iron crystal sized of ~25 nm is surrounded by amorphous ZrO2 coating layer. TGA study showed an evidence of weight loss of less than 2% over the temperature range of 50-500 °C. The nanoparticles are basically in ferromagnetic state and their magnetic properties depend strongly on annealing temperature. The thermal treatment carried out in as-prepared sample resulted in reduction of coercivity and an increase in saturation magnetization. X-ray diffraction experiments on the samples after annealing at 400-600 °C indicate that the size of the Fe@ZrO2 particles is increased slightly with increasing annealing temperature, indicating the ZrO2 coating layer is effective to interrupt growing of iron particle according to heat treatment.

Pilot급 산소 MILD 연소에 관한 실험 및 수치해석적 연구 (An Experimental and Numerical Study on the Oxy-MILD Combustion at Pilot Scale Heating Capacity)

  • 차천륜;이호연;황상순
    • 설비공학논문집
    • /
    • 제28권7호
    • /
    • pp.275-282
    • /
    • 2016
  • MILD (Moderate and Intense Low-oxygen Dilution) combustion using oxygen as an oxidizer is considered as one of the most promising combustion technologies for high energy efficiency and for reducing nitrogen oxide and carbon dioxide emissions. In order to investigate the effects of nozzle angle and oxygen velocity conditions on the formation of oxygen-MILD combustion, numerical and experimental approaches were performed in this study. The numerical results showed that the recirculation ratio ($K_V$), which is an important parameter for performing MILD combustion, was increased in the main reaction zone when the nozzle angle was changed from 0 degrees to 15 degrees. Also, it was observed that a low and uniform temperature distribution was achieved at an oxygen velocity of 400 m/s. The perfectly invisible oxy-MILD flame was observed experimentally under the condition of a nozzle angle of $10^{\circ}$ and an oxygen velocity of 400 m/s. Moreover, the NOx emission limit was satisfied with NOx regulation of less than 80 ppm.

Exergetic analysis for optimization of a rotating equilateral triangular cooling channel with staggered square ribs

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권3호
    • /
    • pp.229-236
    • /
    • 2016
  • Exergetic analysis was introduced in optimization of a rotating equilateral triangular internal cooling channel with staggered square ribs to maximize the net exergy gain. The objective function was defined as the net exergy gain considering the exergy gain by heat transfer and exergy losses by friction and heat transfer process. The flow field and heat transfer in the channel were analysed using three-dimensional Reynolds-averaged Navier-Stokes equations under the uniform temperature condition. Shear stress transport turbulence model has been selected as a turbulence closure through the turbulence model test. Computational results for the area-averaged Nusselt number were validated compared to the experimental data. Three design variables, i.e., the angle of rib, the rib pitch-to-hydraulic diameter ratio and the rib width-to-hydraulic diameter ratio, were selected for the optimization. The optimization was performed at Reynolds number, 20,000. Twenty-two design points were selected by Latin hypercube sampling, and the values of the objective function were evaluated by the RANS analysis at these points. Through optimization, the objective function value was improved by 22.6% compared to that of the reference geometry. Effects of the Reynolds number, rotation number, and buoyancy parameter on the heat transfer performance of the optimum design were also discussed.

CFD를 통한 용융탄산염 연료전지 단위전지용 셀 프레임 구조 설계 (Design of Cell Frame Structure of Unit Cell for Molten Carbonate Fuel Cell Using CFD Analysis)

  • 이성주;임치영;이창환
    • 한국수소및신에너지학회논문집
    • /
    • 제29권1호
    • /
    • pp.56-63
    • /
    • 2018
  • In this study, a $100cm^2$ cell frame for a molten carbonate fuel cell was designed using CFD analysis. Electrochemical reactions, gas flow, and the heat transfer in $100cm^2$ cell frame were modeled using COMSOL Multiphysics. Two design variables such as the height of the cell frame and the length of the gas input area were determined to obtain minimized temperature distribution and uniform gas distribution. With two design parameter such as height of the cell frame and the length of the gas flow channel, the temperature difference in the cell fame was decreased to $5^{\circ}C$ and the gas uniformity in the flow channel were achieved.

임계전류 및 전류분포가 다중테이프 초전도도체의 교류손실 측정에 미치는 영향 (Influence of Tape's Critical Currents and Current Distributions on AC Loss Measurement in a Multi-tape Conductor)

  • 류경우;마용호;최병주;황시돌
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제7권1호
    • /
    • pp.47-50
    • /
    • 2005
  • The AC loss is an important issue in the design of the high temperature superconductor (HTS) power cables, which consist of a number of lli 2223 tapes wound on a former. In the cables, the tapes have different critical currents intrinsically. And they are electrically connected to each other and current leads. These make loss measurements considerably complex, especially for short samples of laboratory size. In this work we have prepared a multi-tape conductor composed of Bi-2223 tapes. The at losses of the conductor have experimentally investigated. The loss tests indicate that the effect of tapes critical currents on AC loss measurement in the multi tape conductor is negligible only if currents in the tapes flow uniformly Moreover, the measured tosses of the conductor are in good agreement with the sum of the transport losses in the tapes. However, in the case of non-uniform current distributions, the measured AC losses considerably depend on the current distribution parameter of the positioning of a voltage lead. Thus special cautions should be needed for the measurement of the true AC losses in the short power cable samples.

분산형 필름제형의 물리적 특징에 미치는 폴리에틸렌글리콜의 영향 (Effect of Polyethylene Glycol on Physicochemical Property in Dispersing Film Formulation)

  • 조영호;이종화;이계원
    • KSBB Journal
    • /
    • 제31권4호
    • /
    • pp.291-299
    • /
    • 2016
  • In this study, Indomethacin, the poorly water soluble drug, was selected and prepared dispersing oral disintegrating films according to the molecular weight of polyethylene glycol (PEG) which are sort of dispersing agents. Also the molecular weight and content of PEG were evaluated effect on the degree of dispersion, physical property and dissolution when making oral dispersing film containing indomethacin to find appropriate condition and suggested guidelines of making oral dispersing film. The appropriate dispersing ratio of the amount of surfactants and dispersing agent were 1% and 4%, also the stability dropped in the PEG molecular weight of 4000 or more. Drying time of oral dispersing film was $90^{\circ}C$ for 10 minutes to 12 minutes that dispersing film's property about flexibility, detachability were very good. The oral dispersion film's content used PEG 400 was $98.6{\pm}0.5%$ and the most uniform. As the molecular weight of PEG increased, dissolution time also increased. On the basis of evaluation parameter, PEG with 400~600 of molecular weight was selected as good dispersing agent in oral dispersing film. Therefore, it can be suggested guideline of preparation application study in oral dispersing film.

다중 파라메터를 이용한 동적 수축시 허리 근육 피로 측정에 관한 연구 (A Study on the Measurement of Back Muscle Fatigue During Dynamic Contraction Using Multiple Parameters)

  • 윤중근;정철기;여송필;김성환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권7호
    • /
    • pp.344-351
    • /
    • 2006
  • The fatigue of back muscle in the repetitive lifting motion was studied using multiple parameters(FFT_MDF, RMS, 2C, NT) in this study. Recent developments in the time-frequency analysis procedures to compute the IMDF(instantaneous median frequency) were utilized to overcome the nonstationarity of EMG signal using Cohen-Posch distribution. But the above method has a lot of computation time because of its complexity. So, in this study, FFT_MDF(median frequency estimation based on FFT) algorithm was used for median frequency estimation of back muscle EMG signal during muscle work in uniform velocity portion of lumbar movement. The analysis period of EMG signal was determined by using the run test and lumbar movement angle in dynamic task, such as lifting. Results showed that FFT_MDF algorithm is well suited for the estimation of back muscle fatigue from the view point of computation time. The negative slope of a regression line fitted to the median frequency values of back muscle EMG signal was taken as an indication of muscle fatigue. The slope of muscle fatigueness with FFT_MDF method shows the similarity of 77.8% comparing with CP_MDF(median frequency estimation based on Cohen Posch distribution) method.