• 제목/요약/키워드: Parameter Generation

검색결과 647건 처리시간 0.03초

EFFECTS OF RADIATION AND HEAT GENERATION ON MHD AND PARABOLIC MOTION ON CASSON FLUIDS FLOW THROUGH A ROTATING POROUS MEDIUM IN A VERTICAL PLATE

  • J. PRAKASH;A. SELVARAJ
    • Journal of applied mathematics & informatics
    • /
    • 제42권3호
    • /
    • pp.607-623
    • /
    • 2024
  • This article studies the effects of heat generation/absorption and thermal radiation on the unsteady magnetohydrodynamic (MHD) Casson fluid flow past a vertical plate through rotating porous medium with constant temperature and mass diffusion. It is assumed that the plate temperature and concentration level are raised uniformly. For finding the exact solution, a set of non-dimensional partial differential equations is solved analytically using the Laplace transform technique. The influence of various non-dimensional parameters on the velocity are discussed, including the effects of the magnetic parameter M, heat generation/absorption Q, thermal radiation parameter R, Prandtl number Pr, Schmidt number Sc, permeability of porous medium parameter, Casson fluid parameter γ, on velocity, temperature, and concentration profiles, which are discussed through several figures. It is found that velocity, temperature, and concentration profiles in the case of heat generation parameter Q, Casson fluid parameter γ, thermal Grashof number Gr, mass Grashof number Gc, Permeability Porous medium parameter K, and time t have retarding effects. It is also seen that the magnetic field M, Thermal Radiation parameter R, Prandtl field Pr, Schmidt number Sc have reverse effects on it.

Entropy Generation Minimization in MHD Boundary Layer Flow over a Slendering Stretching Sheet in the Presence of Frictional and Joule Heating

  • Afridi, Muhammad Idrees;Qasim, Muhammad;Khan, Ilyas
    • Journal of the Korean Physical Society
    • /
    • 제73권9호
    • /
    • pp.1303-1309
    • /
    • 2018
  • In the present paper, we study the entropy analysis of boundary layer flow over a slender stretching sheet under the action of a non uniform magnetic field that is acting perpendicular to the flow direction. The effects of viscous dissipation and Joule heating are included in the energy equation. Using similarity transformation technique the momentum and thermal boundary layer equations to a system of nonlinear differential equations. Numerical solutions are obtained using the shooting and fourth-order Runge-Kutta method. The expressions for the entropy generation number and Bejan number are also obtained using a suggested similarity transformation. The main objective of this article is to investigate the effects of different governing parameters such as the magnetic parameter ($M^2$), Prandtl number (Pr), Eckert number (Ec), velocity index parameter (m), wall thickness parameter (${\alpha}$), temperature difference parameter (${\Omega}$), entropy generation number (Ns) and Bejan number (Be). All these effects are portrayed graphically and discussed in detail. The analysis reveals that entropy generation reduces with decreasing wall thickness parameter and increasing temperature difference between the stretching sheet and the fluid outside the boundary layer. The viscous and magnetic irreversibilities are dominant in the vicinity of the stretching surface.

미세먼지 간이측정기 현장 검사용 시험 입자 발생기 개발 및 성능 평가 (Development and performance evaluation of a test particle generator for a field inspection equipment of PM-2.5 sensors)

  • 정혁;박진수
    • 한국입자에어로졸학회지
    • /
    • 제18권3호
    • /
    • pp.61-68
    • /
    • 2022
  • In this study, a fluidized bed particle generator was developed to generate an aerosol without supply of compressed air and to increase portability. It was assumed that the mixing ratio of the test particles and beads, the input amount, and the air flow rate supplied to the generator would have effect on the aerosol generation characteristics. The product of these three parameters was set as a characteristic parameter and particle generation characteristics according to the change of the characteristic parameter were observed. As a result, it was confirmed that the input amount of test particles and beads was not suitable as a characteristic parameter and a characteristic parameter expressed as a product of the mass mixing ratio and the air flowrate was newly defined. When the new characteristic parameter is applied, it can be confirmed that the total amount of particles generated from the particle generator is a function of the characteristic parameter. As a result of measuring the amount of particle generation by adjusting the characteristic parameter, it was confirmed that the performance required for the test particle generator for the field inspection equipment of PM-2.5 sensors could be satisfied.

파라미터를 이용한 배전계통 보호능력 평가 및 최적화 (Optimal protection by using Parametric Protection Ability Index)

  • 신재항;현승호;임성일;이승재;최인선;진보건
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.202-204
    • /
    • 2003
  • This paper suggests an optimal parameter setting method by use of parametric protectability index, as the objective function. In this paper, a gradient based optimization method is used under the assumption that the initial values of a parameter is in a convex set including the optimal value, which is verified by a plenty of simulation studies. The proposed method is applied to a sample distribution network to shows its effectiveness.

  • PDF

신경망-유전자 알고리즘을 이용한 전기${\cdot}$유압 서보시스템의 파라미터 식별 (Parameter Identification Using Hybrid Neural-Genetic Algorithm in Electro-Hydraulic Servo System)

  • 곽동훈;정봉호;이춘태;이진걸
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.192-199
    • /
    • 2002
  • This paper demonstrates that hybrid neural-genetic multimodel parameter estimation algorithm can be applied to structured system Identification of electro-hydraulic servo system. This algorithm are consist of a recurrent incremental credit assignment (ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. We manufactured electro-hydraulic servo system and the hybrid neural-genetic multimodel parameter estimation algorithm is applied to the task to find the parameter values(mass, damping coefficient, bulk modulus, spring coefficient) which minimize total square error.

전기.유압 서보시스템의 수정된 신경망-유전자 알고리즘에 의한 파라미터 식별 (Parameter Identification of an Electro-Hydraulic Servo System Using a Modified Hybrid Neural-Genetic Algorithm)

  • 곽동훈;이춘태;정봉호;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제9권6호
    • /
    • pp.442-447
    • /
    • 2003
  • This paper demonstrates that a modified hybrid neural-genetic multimodel parameter estimation algorithm can be applied to structured system identification of an electro-hydraulic servo system. This algorithm is consists of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. The modified hybrid neural-genetic multimodel parameter estimation algorithm is applied to an electro-hydraulic servo system the task to find the parameter values such as mass, damping coefficient, bulk modulus, spring coefficient and disturbance, which minimizes the total square error.

개선된 신경망-유전자 다중모델에 의한 전기.유압 서보시스템의 파라미터 식별 (Parameter Identification of an Electro-Hydraulic Servo System Using an Improved Hybrid Neural-Genetic Multimodel Algorithm)

  • 곽동훈;정봉호;이춘태;이진걸
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.196-203
    • /
    • 2003
  • This paper demonstrates that an improved hybrid neural-genetic multimodel parameter estimation algorithm can be applied to the structured system identification of an electro-hydraulic servo system. This algorithm is consists of a recurrent incremental credit assignment (ICRA) neural network and a genetic algorithm, The ICRA neural network evaluates each member of a generation of model and the genetic algorithm produces new generation of model. We manufactured an electro-hydraulic servo system and the improved hybrid neural-genetic multimodel parameter estimation algorithm is applied to the task to find the parameter values, such as mass, damping coefficient, bulk modulus, spring coefficient and disturbance, which minimize total square error.

Fuzzy 모델을 이용한 초기선형 생성 (Preliminary Hull Form Generation Using Fuzzy Model)

  • 김수영;이연승
    • 대한조선학회논문집
    • /
    • 제29권4호
    • /
    • pp.36-44
    • /
    • 1992
  • 초기 선형 생성을 위한 B-spline form-parameter 방법의 개선을 위해 Form-parameter 간의 관계를 실적선 데이타 분석으로 Fuzzy 모델링하고, Fuzzy 추론을 통해 Form-parameter 값들을 도출했다. Fuzzy 모델의 유용성 확인을 위해 Fuzzy 모델에 의해 도출된 선형을 실제의 모델 선형과 비교했다.

  • PDF

IPMSM 파라미터 변동에 따른 차세대 고속전철 시스템의 운전 특성 고찰 (Operation Characteristics Investigation of the Next Generation High Speed Railway System with respect to IPMSM Parameter Variation)

  • 박동규;서용훈;이상현;진강환;김윤호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3133-3141
    • /
    • 2011
  • The next generation domestic high speed railway system is a power distributed type and uses vector control method for motor speed control. Nowadays, inverter driven induction motor system is widely used. However, recently PMSM drives are deeply considered as a alternative candidate instead of an induction motor drive system due to their advantages in efficiency, noise reduction and maintenance. The next-generation high speed train is composed of 2 converter units, 4 inverter units, and 4 Traction Motor units. Each motor is connected to the inverter directly. In this paper, the effect of IPMSM parameter variations to the system operation characteristics of the multi inverter drive high speed train system are investigated. The parallel connected inverter input-output characteristics are analyzed to the parameter mismatches of IPMSM using the 1C1M control simulator based on Matlab/Simulink.

  • PDF

가상현실을 이용한 건설공사 설계단계의 파라미터기반 3D객체 생성체계 구축방안 (Development of Parameter-based 3D Object Generation System by Using Virtual Reality for Construction Project Design Phase)

  • 강인석;권중희;문진석;문현석;지상복
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.108-113
    • /
    • 2008
  • Virtual construction (VC) system enables project manager to visually check mistakes in design materials by using virtual reality technology. In using VC system, to make 3D object by each construction element is still tedious work. This study suggests an improved method to make 3D object by using parameter-based 3D generation function. The IDEFO model to organize the process for the function. A VC system by this function was developed in this study and the function was verified by a bridge project in this system.

  • PDF