• Title/Summary/Keyword: Parameter Control

Search Result 4,530, Processing Time 0.05 seconds

Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.641-651
    • /
    • 2019
  • The stochastic stability control of the parameter-excited vibration of an inclined stay cable with multiple modes coupling under random and periodic combined support disturbances is studied by using the direct eigenvalue analysis approach based on the response moment stability, Floquet theorem, Fourier series and matrix eigenvalue analysis. The differential equation with time-varying parameters for the transverse vibration of the inclined cable with control under random and deterministic support disturbances is derived and converted into the randomly and deterministically parameter-excited multi-degree-of-freedom vibration equations. As the stochastic stability of the parameter-excited vibration is mainly determined by the characteristics of perturbation moment, the differential equation with only deterministic parameters for the perturbation second moment is derived based on the $It{\hat{o}}$ stochastic differential rule. The stochastically and deterministically parameter-excited vibration stability is then determined by the deterministic parameter-varying response moment stability. Based on the Floquet theorem, expanding the periodic parameters of the perturbation moment equation and the periodic component of the characteristic perturbation moment expression into the Fourier series yields the eigenvalue equation which determines the perturbation moment behavior. Thus the stochastic stability of the parameter-excited cable vibration under the random and periodic combined support disturbances is determined directly by the matrix eigenvalues. The direct eigenvalue analysis approach is applicable to the stochastic stability of the control cable with multiple modes coupling under various periodic and/or random support disturbances. Numerical results illustrate that the multiple cable modes need to be considered for the stochastic stability of the parameter-excited cable vibration under the random and periodic support disturbances, and the increase of the control damping rather than control stiffness can greatly enhance the stochastic stability of the parameter-excited cable vibration including the frequency width increase of the periodic disturbance and the critical value increase of the random disturbance amplitude.

Adaptive Immersion and Invariance Control of the Van der Pol Equation

  • Khovidhungij, Watcharapong;Santhanapipatkul, Ponesit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.706-709
    • /
    • 2005
  • We study the adaptive stabilization of the Van der Pol equation. A parameter update law is designed by the immersion and invariance method, and is used in conjunction with both the feedback linearization and backstepping control laws. Simulation results show that the responses obtained in the adaptive case are very similar to the known parameter case, and the parameter estimator converges to the true value.

  • PDF

Tracking control of variable stiffness hysteretic-systems using linear-parameter-varying gain-scheduled controller

  • Pasala, D.T.R.;Nagarajaiah, S.;Grigoriadis, K.M.
    • Smart Structures and Systems
    • /
    • v.9 no.4
    • /
    • pp.373-392
    • /
    • 2012
  • Tracking control of systems with variable stiffness hysteresis using a gain-scheduled (GS) controller is developed in this paper. Variable stiffness hysteretic system is represented as quasi linear parameter dependent system with known bounds on parameters. Assuming that the parameters can be measured or estimated in real-time, a GS controller that ensures the performance and the stability of the closed-loop system over the entire range of parameter variation is designed. The proposed method is implemented on a spring-mass system which consists of a semi-active independently variable stiffness (SAIVS) device that exhibits hysteresis and precisely controllable stiffness change in real-time. The SAIVS system with variable stiffness hysteresis is represented as quasi linear parameter varying (LPV) system with two parameters: linear time-varying stiffness (parameter with slow variation rate) and stiffness of the friction-hysteresis (parameter with high variation rate). The proposed LPV-GS controller can accommodate both slow and fast varying parameter, which was not possible with the controllers proposed in the prior studies. Effectiveness of the proposed controller is demonstrated by comparing the results with a fixed robust $\mathcal{H}_{\infty}$ controller that assumes the parameter variation as an uncertainty. Superior performance of the LPV-GS over the robust $\mathcal{H}_{\infty}$ controller is demonstrated for varying stiffness hysteresis of SAIVS device and for different ranges of tracking displacements. The LPV-GS controller is capable of adapting to any parameter changes whereas the $\mathcal{H}_{\infty}$ controller is effective only when the system parameters are in the vicinity of the nominal plant parameters for which the controller is designed. The robust $\mathcal{H}_{\infty}$ controller becomes unstable under large parameter variations but the LPV-GS will ensure stability and guarantee the desired closed-loop performance.

Actuator Fault Detection and Adaptive Fault-Tolerant Control Algorithms Using Performance Index and Human-Like Learning for Longitudinal Autonomous Driving (종방향 자율주행을 위한 성능 지수 및 인간 모사 학습을 이용하는 구동기 고장 탐지 및 적응형 고장 허용 제어 알고리즘)

  • Oh, Sechan;Lee, Jongmin;Oh, Kwangseok;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.129-143
    • /
    • 2021
  • This paper proposes actuator fault detection and adaptive fault-tolerant control algorithms using performance index and human-like learning for longitudinal autonomous vehicles. Conventional longitudinal controller for autonomous driving consists of supervisory, upper level and lower level controllers. In this paper, feedback control law and PID control algorithm have been used for upper level and lower level controllers, respectively. For actuator fault-tolerant control, adaptive rule has been designed using the gradient descent method with estimated coefficients. In order to adjust the control parameter used for determination of adaptation gain, human-like learning algorithm has been designed based on perceptron learning method using control errors and control parameter. It is designed that the learning algorithm determines current control parameter by saving it in memory and updating based on the cost function-based gradient descent method. Based on the updated control parameter, the longitudinal acceleration has been computed adaptively using feedback law for actuator fault-tolerant control. The finite window-based performance index has been designed for detection and evaluation of actuator performance degradation using control error.

Decentralized Controller Design for Nonlinear Systems using LPV technique

  • Lee, Sangmoon;Kim, Sungjin;Sangchul Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.68.5-68
    • /
    • 2001
  • This paper investigates the problem of linear parameter-dependent output feedback controllers design for interconnected linear parameter-varying(LPV) plant. By using a parameter-independent common Lyapunov function, sucient conditions for solving the problems are established, which allow us to design linear parameter dependent decentralized controllers in terms of scaled H-infinite control problems for related linear systems without interconnections. The solvability conditions are expressed in terms of finite-dimensional linear matrix inequalities(LMI´s) evaluated at the extreme points of the admissible parameter set.

  • PDF

Robust control of nonlinear system by using pole sensitivity (극점감도를 고려한 비선형 시스팀의 강인한 제어)

  • 서병설;강진식;임동균
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.185-190
    • /
    • 1991
  • In this paper, we present a method of analising a system with nonlinear parameter by pole sensitivity defined by the rate of pole movement with respect of non-linear parameter variation. Pole sensitivity give us not only the rate of pole movement but also the directional information. We present a method of design of a state feedback for a system with nonlinear system parameter by considering the pole sensitivity and show that the suggested method guarantee the stability robustness for a system with nonlinear parameter, parameter perturbation and urimodelled dynamics.

  • PDF

Hierarchical Topology/parameter Evolution in Engineering Design

  • Seo Ki sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.185-188
    • /
    • 2005
  • This paper suggests a control method for efficient topology/parameter evolution in a bond-graph-based GP design framework that automatically synthesizes designs for multi-domain, lumped parameter dynamic systems, We adopt a hierarchical breeding control mechanism with fitness-level-dependent differences to obtain better balancing of topology/parameter search - biased toward topological changes at low fitness levels, and toward parameter changes at high fitness levels. As a testbed for this approach, an eigenvalue assignment problem, which is to find bond graph models exhibiting minimal distance errors from target sets of eigenvalues, was tested and showed improved performance for various sets of eigenvalues.

  • PDF

Robust Control System of PMSM using Dual Adaptive Control Loop (이중 적응제어 루프를 이용한 영구자석 동기 전동기의 강인성 제어 시스템)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Yoon, Myoung-Kyun;Kim, Cheol-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.175-178
    • /
    • 1991
  • The drive system of servo motor is requested to have robustness of disturbance and parameter variation. However, the dynamics of PMSM drive change significantly by forced disturbance and parameter variation. Moreover, the state error caused by them should be suppressed completely and rapidly. In this paper, the vector-control system of PMSM using dual adaptive control loop is investigated. In the proposed system, linear adaptive control loop rapidly recovers the state error caused by both disturbance and parameter variation. In the dual adaptive control loop, the inner loop reduces the system sensitivity of parameter variation and disturbance, and the outer loop suppresses the state error caused by them completely. The proposed servo system is verified through a computer simulations and experimental results.

  • PDF

Robust Two Degree of Freedom $H_\infty$ Control for Uncertain Systems

  • Kang, Young-Jung;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.355-359
    • /
    • 1993
  • This paper deals with the problem of robust TDF(Two Degree of Freedom) H$_{\infty}$ control design for a linear system with parameter uncertainty in the state space model. The uncertain system considered here is with the time-invariant norm-bounded parameter uncertainty in the state matrix. A TDF H$_{\infty}$ control design is presented which robustly stabilizes the plant, guarantees the robust H$_{\infty}$ performance and improves the tracking performance for the closed-loop system in the face of parameter uncertainty. It is shwon that a suitable stabilizing control law can be constructed in terms of a positive definite solution to a certain parameter-dependent algebraic Riccati equation and a good tracking performance can be constructed in terms of suitable feedforward control law.aw.

  • PDF

Torque Control of Wind Turbine Using Nonlinear Parameter of Rotor Speed in the Region of Optimal Tip Speed Ratio (최적 주속비 구간에서 로터속도 비선형 파라미터를 이용한 풍력터빈의 토크제어)

  • Lim, Chae-Wook;Kim, Sang-Gyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.30-35
    • /
    • 2012
  • Aerodynamic torque of wind turbine has nonlinear properties. Nonlinearity of aerodynamic torque is very important in wind turbine in the aspect of control. The traditional torque control method using optimal mode gain has been applied in many wind turbines but its response is slower as wind turbine size is larger. In this paper, a torque control method using a nonlinear parameter of rotor speed among nonlinear properties of aerodynamic torque. Simulink model is implemented to obtain the nonlinear parameter of rotor speed and numerical simulations for a 2MW wind turbine are carried out and simulation results for the traditional and proposed torque control methods are compared.