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Abstract: We study the adaptive stabilization of the Van der Pol equation. A parameter update law is designed by the

immersion and invariance method, and is used in conjunction with both the feedback linearization and backstepping control

laws. Simulation results show that the responses obtained in the adaptive case are very similar to the known parameter case,

and the parameter estimator converges to the true value.
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1. Introduction
In [1], Astolfi and Ortega propose the immersion and invari-

ance (I & I) method as a new tool to design a controller

for nonlinear systems. This method is particularly useful

when we know a stabilizing controller of a nominal reduced-

order model and we would like to robustify it with respect

to higher-order dynamics. A control law could be designed

so that the full system dynamics is asymptotically immersed

into the reduced-order one (the target system). The method

can also be used in adaptive control problems, giving stabi-

lizing control schemes that counter the effect of the uncertain

parameters. The procedure does not invoke certainty equiv-

alence, nor requires a linear parameterization. They apply

the technique to design a stabilizing controller for a magnetic

levitation system, a global tracking controller for a flexible

joint robot, and an adaptive controller for a visual servoing

system. Besides these works, there are currently scarcely

any applications of the immersion and invariance technique

to other nonlinear systems.

In this paper, we present an adaptive stabilizing controller

design based on the immersion and invariance method for

the Van der Pol equation. The control objective is to make

origin globally asymptotically stable despite an unknown pa-

rameter in the system.

2. The Immersion and Invariance Method
Main results about the immersion and invariance technique

can be summarized in the following theorems [1].

Theorem 1 Consider a nonlinear system

ẋ = f(x) + g(x)u (1)

where x ∈ Rn and u ∈ Rm. Let x∗ ∈ Rn be the equilibrium

point to be stabilized and let p < n.

Suppose we can find mappings

α(·) : Rp → Rp π(·) : Rp → Rn c(·) : Rp → Rm

φ(·) : Rn → Rn− p ψ(·, ·) : Rn× (n− p) → Rm

such that the following conditions hold.

(A1) (Target system) The system

ξ̇ = α(ξ) (2)

with state ξ ∈ Rp, has a globally asymptotically stable equi-

librium at ξ∗ ∈ Rp and x∗ = π(ξ∗).

(A2) (Immersion condition) For all ξ ∈ Rp,

f(π(ξ)) + g(π(ξ))c(π(ξ)) =
∂π

∂ξ
α(ξ) (3)

(A3) (Implicit manifold) The following set identity holds

{x ∈ Rn | φ(x) = 0}
= {x ∈ Rn | x = π(ξ) for some ξ ∈ Rp}

(4)

(A4) (Manifold attractivity and trajectory boundedness) All

trajectories of the system

ż =
∂φ

∂x
[f(x) + g(x)ψ(x, z)] (5)

ẋ = f(x) + g(x)ψ(x, z) (6)

are bounded and satisfy

lim
t→∞

z(t) = 0 (7)

Then, x∗ is a globally asymptotically stable equilibrium

point of the closed-loop system

ẋ = f(x) + g(x)ψ(x, φ(x))

In this case, we say that the system (1) is I & I stabilizable

with respect to the target dynamics (2)

The immersion and invariance method can be extended to

the problem of adaptive stabilization of nonlinear systems

under the following assumption.

(A5) (Stabilizability) There exists a parameterized function

Ψ(x, θ), where θ ∈ Rq, such that for some unknown θ∗ ∈ Rq,

the system

ẋ = f∗(x) := f(x) + g(x)Ψ(x, θ∗) (8)

has a globally asymptotically stable equilibrium at x = x∗.

The system (1) under the assumption (A5) is said to be

adaptively I & I stabilizable if the system

ẋ = f(x) + g(x)Ψ(x, θ̂ + β1(x)) (9)

˙̂
θ = β2(x, θ̂)
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with extended state (x, θ̂) and the functions β1 and β2, is

I & I stabilizable with target dynamics

ξ̇ = f∗(ξ). (10)

Theorem 2 Consider the system (1) with assumptions (A5)

and

(A6) (Linearly parameterized control) the function Ψ(x, θ)

may be written as

Ψ(x, θ) = Ψ0(x) + Ψ1(x)θ (11)

for some known functions Ψ0(x) and Ψ1(x).

Assume that there exists a function β1 : Rn → Rm such that

(A7) (Realizability) (∂β1/∂x)f∗(x) is independent of the un-

known parameters.

(A8) (Manifold attractivity and trajectory boundedness) All

trajectories of the error system

ẋ = f∗(x) + g(x)Ψ1(x)z (12)

ż =

[
∂β1

∂x
g(x)Ψ1(x)

]
z (13)

are bounded and satisfy

lim
t→∞

g(x(t))Ψ1(x(t))z(t) = 0.

Then, (1) is adaptively I & I stabilizable with the parameter

update law given by

β2(x) = −∂β1

∂x
f∗(x). (14)

3. Van der Pol Equation
Consider the Van der Pol equation

ẋ1 = x2 (15)

ẋ2 = −x1 + ε(1− x2
1)x2 + u (16)

where ε is assumed to be an unknown parameter. The control

objective is to make the origin globally asymptotically stable.

First, we assume that ε is known and design stabilizing con-

trol laws by the feedback linearization method [2] and the

backstepping method [3].

By cancellation of the nonlinearity in the equation of ẋ2, the

feedback linearization control law is

uFL(x, ε) = −ε(1− x2
1)x2 + a1x1 + a2x2 (17)

where a1 < 1 and a2 < 0 are design parameters.

The backstepping control law, on the other hand, does not

try to make the system linear, but retains or introduces some

useful nonlinearities while trying to stabilize the system. The

design procedure is as follows:

Consider the scalar system

ẋ1 = x2 (18)

Consider x2 as the virtual control and choose

x2 = φ(x1) = −x3
1

The Lyapunov function for the subsystem (18) is V = 1
2
x2

1.

Then, we choose

−x1 + ε(1− x2
1)x2 + u = −x2

∂x3
1

∂x1
− x1 − b1(x

3
1 + x2)

to stabilize the system with respect to the Lyapunov function

Va = 1
2
x2

1 + 1
2
(x2 + x1)

2. Finally, the backstepping control

law is

uBS(x, ε) = −ε(1− x2
1)x2 − 3x2

1x2 − b1(x
3
1 + x2) (19)

where b1 > 0 is a design parameter.

Now, consider the case when ε is assumed to be unknown.

To design a parameter update law by the immersion and

invariance method, we select the target system as

ẋ1 = x2 (20)

ẋ2 = −x1 + θ∗(1− x2
1)x2 + u(x, θ∗) (21)

where θ∗ is the value of the unknown parameter ε to be

estimated. The implicit manifold condition (A3) in this case

is

φ(x, θ̂) = θ̂ − θ∗ + β1(x) = 0

where θ̂ is the estimate of ε, and the off-the-manifold coor-

dinate is

z = θ̂ − θ∗ + β1(x)

Its derivative is

ż = β2(x) +
∂β1

∂x
[f0(x) + f1(x)θ∗ + g(x)u]

where

f0(x) =

[
x2

−x1

]
, f1(x) =

[
0

(1− x2
1)x2

]
, g(x) =

[
0

1

]
If we choose

β2(x) = −∂β1

∂x

(
f0(x) + f1(x)[θ̂ + β1(x)] + g(x)u

)
(22)

and choose

β1(x) = k(1− x2
1)
x2

2

2
(23)

where k > 0 is a design parameter, we obtain the parameter

update law as

˙̂
θ = β2(x)

= kx1x
3
2 − k(1− x2

1)

× [−x1 + (1− x2
1)x2(θ̂ + β1) + u]

(24)

and the adaptive control law is

u = uFL(x, θ̂ + β1) (25)

in the case of the feedback linearization control (17), and

u = uBS(x, θ̂ + β1) (26)

in the case of the backstepping control (19).

The off-the-manifold dynamics becomes

ż = −[k(1− x2
1)

2x2
2]z (27)

From (27), we see that the trajectory of z is bounded and

converges to zero.
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4. Simulation Results
Computer Simulations are performed with ε = 1. The con-

troller parameters for the feedback linearization control law

(17) are chosen as a1 = −19, a2 = −9 and the controller

parameters for the backstepping control law (19) is b1 = 5.

The parameter in the immersion and invariance parameter

update law (24) is k = 1. The initial condition of the Van

der Pol system is x1(0) = x2(0) = 2.5.

Figures 1 and 2 show the time response of the states x1,

x2 under the feedback linearization control law when θ̂(0) =

0.8 and θ̂(0) = 1.2, respectively. The result of the fixed

controller (17) (when ε is assumed to be known) is shown in

thick line, while that of the adaptive controller (25) (when

ε is assumed to be unknown and the parameter update law

(24) is used) is shown in thin line. The value of the parameter

estimate θ̂ + β1 is shown in Figure 3.

Similarly, Figures 4 and 5 show the time response of the

states x1, x2 under the backstepping control law when

θ̂(0) = 0.8 and θ̂(0) = 1.2, respectively. The result of the

fixed controller (19) is shown in thick line, while that of the

adaptive controller (26) is shown in thin line. The value of

the parameter estimate θ̂ + β1 is also shown in Figure 6.

Figures 7 - 8 and 9 - 10 show the phase portrait of the system

under the feedback linearization and backstepping control

laws respectively. As in previous figures, the results of the

fixed controllers are shown in thick line while those of the

adaptive controllers are shown in thin line.

Fig. 1. Time responses of x1 and x2 under the feedback

linearization control when θ̂(0) = 0.8

Fig. 2. Time responses of x1 and x2 under the feedback

linearization control when θ̂(0) = 1.2

Fig. 3. The parameter estimate θ̂ + β1 under the feedback

linearization control when (a) θ̂(0) = 0.8 and (b) θ̂(0) =

1.2

Fig. 4. Time responses of x1 and x2 under the backstepping

control when θ̂(0) = 0.8

Fig. 5. Time responses of x1 and x2 under the backstepping

control when θ̂(0) = 1.2

Fig. 6. The parameter estimate θ̂ + β1 under the backstep-

ping control when (a) θ̂(0) = 0.8 and (b) θ̂(0) = 1.2
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Fig. 7. Phase portrait of the system under the feedback

linearization control with θ̂(0) = 0.8

Fig. 8. Phase portrait of the system under the feedback

linearization control with θ̂(0) = 1.2

Fig. 9. Phase portrait of the system under the backstepping

control with θ̂(0) = 0.8

Fig. 10. Phase portrait of the system under the backstepping

control with θ̂(0) = 1.2

It can be seen that the parameter update law designed by

the immersion and invariance method can be used with both

the feedback linearization control law and the backstepping

control law such that the system responses do not differ much

from the known parameter (fixed controller) case. The value

of the parameter estimate also converges toward the true

parameter value in both cases.

5. Conclusion
We design a parameter update law for the Van der Pol

equation by the recently proposed immersion and invari-

ance method. The parameter update law obtained can be

used with both the feedback linearization control law and

the backstepping control law to stabilize the system when

a system parameter is unknown. The system responses of

the adaptive controllers do not differ much from those of the

fixed controllers and the value of the parameter estimate also

converges toward the true parameter value in both cases.
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