• Title/Summary/Keyword: Parameter Changes

Search Result 1,264, Processing Time 0.025 seconds

Influence of sputtering parameter on the properties of silver-doped zinc oxide sputtered films

  • S. H. Jeong;Lee, S. B.;J.H. Boo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.58-58
    • /
    • 2003
  • Silver doped ZnO (SZO) films were prepared by rf magnetron sputtering on glass substrates with extraordinary designed ZnO target. With the doping source for target, use AgNO$_3$ powder on a various rate (0, 2, and 4 wt.%). We investigated dependence of coating parameter such as dopant content in target and substrate temperature in the SZO films. The SZO films have a preferred orientation in the (002) direction. As amounts of the Ag dopant in the target were increased, the crystallinity and the transmittance and optical band gap were decreased. And the substrate temperature were increased, the crystallinity and the transmittance were increased. But the crystallinity and the transmittance of SZO films were retrograde at 200$^{\circ}C$. Upside facts were related with composition. In addition, the Oxygen K-edge features of the SZO films were investigated by using near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Changes of optical band gap of the SZO films were explained compared with XRD, XPS and NEXAFS spectra.

  • PDF

A Study on the Effects of Process Parameters on Dynamic Behavior Changes of Turning System (선반에서 공정변수가 가공물의 동적 거동 변화에 미치는 영향에 관한 연구)

  • Kim, Kiho;Oh, Chaeyoun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.21-28
    • /
    • 1997
  • This paper presents the influence of the process parameters on the change in dynamic behavior of a lathe turning system. With variation of feed rate, depth of cut, direction of tool motion, cutting speed and tool location along the workpiece, the dynamic characteristics of stable cutting, chatter transition and fully developed chatter regions are demonstrated. The workpiece vibration during machining is continuously measured at different tool locations along the workpiece and quantitatively analyzed. Complex linear behavior due to change of process parameter values as well as fundamental wystem nonlinearity due to change of process configuration indicated by a tool path dependence of the locations of chatter onset and disappearance are described. Finally, the structural characteristics of the turning system which can have large and nonlinear effects on system behavior are presented.

  • PDF

Wave propagation analysis of carbon nanotubes reinforced composite plates

  • Mohammad Hosseini;Parisa Chahargonbadizade;Mohammadreza Mofidi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.335-354
    • /
    • 2023
  • In this study, analysis of wave propagation characteristics for functionally graded carbon nanotube-reinforced composite (FG-CNTRC) nanoplates is performed using first-order shear deformation theory (FSDT) and nonlocal strain gradient theory. Uniform distribution (UD) and three types of functionally graded distributions of carbon nanotubes (CNTs) are assumed. The effective mechanical properties of the FG-CNTRC nanoplate are assumed to vary continuously in the thickness direction and are approximated based on the rule of mixture. Also, the governing equations of motion are derived via the extended Hamilton's principle. In numerical examples, the effects of nonlocal parameter, wavenumber, angle of wave propagation, volume fractions, and carbon nanotube distributions on the wave propagation characteristics of the FG-CNTRC nanoplate are studied. As represented in the results, it is clear that the internal length-scale parameter has a remarkable effect on the wave propagation characteristics resulting in significant changes in phase velocity and natural frequency. Furthermore, it is observed that the strain gradient theory yields a higher phase velocity and frequency compared to those obtained by the nonlocal strain gradient theory and classic theory.

Non-destructive assessment of carbonation in concrete using the ultrasonic test: Influenced parameters

  • Javad Royaei;Fatemeh Nouban;Kabir Sadeghi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.301-308
    • /
    • 2024
  • Concrete carbonation is a continuous and slow process from the outside to the inside, in which its penetration slows down with the increased depth of carbonation. In this paper, the results of the evaluation of the measurement of concrete carbonation depth using a non-destructive ultrasonic testing method are presented. According to the results, the relative nonlinear parameter caused more sensitivity in carbonation changes compared to Rayleigh's fuzzy velocity. Thus, the acoustic nonlinear parameter is expected to be applied as a quantitative index to recognize carbonation effects. In this research, combo diagrams were developed based on the results of ultrasonic testing and the experiment to determine carbonation depth using a phenolphthalein solution, which could be considered as instructions in the projects involving non-destructive ultrasonic test methods. The minimum and maximum accuracy of this method were 89% and 97%, respectively, which is a reasonable range for operational projects. From the analysis performed, some useful expressions are found by applying the regression analysis for the nonlinearity index and the carbonation penetration depth values as a guideline.

Predictors of radiation pneumonitis and pulmonary function changes after concurrent chemoradiotherapy of non-small cell lung cancer

  • Park, Young Hee;Kim, Jae-Sung
    • Radiation Oncology Journal
    • /
    • v.31 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • Purpose: To evaluate the predictive factors of radiation pneumonitis (RP) and associated changes in pulmonary function after definitive concurrent chemoradiotherapy (CCRT) in patients with non-small cell lung cancer (NSCLC). Materials and Methods: Medical records of 60 patients with NSCLC who received definitive CCRT were retrospectively reviewed. Dose volumetric (DV) parameters, clinical factors, and pulmonary function test (PFT) data were analyzed. RP was graded according to the CTCAE ver. 4.0. Percentage of lung volume that received a dose of threshold (Vdose) and mean lung dose (MLD) were analyzed for potential DV predictors. PFT changes were calculated as the difference between pre-RT and post-RT values at 3, 6, and 12 months after RT. Results: Twenty-two patients (37%) developed grade ${\geq}2$ RP. Among clinical factors, tumor location in lower lobe was associated with RP. Among the DV parameters, only MLD >15 Gy was associated with grade ${\geq}2$ RP. There were statistically significant decreases in PFT at all points compared with pre-RT values in grade ${\geq}2$ RP group. MLD was associated with forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1) changes at 6 and 12 months. V10 was associated with FVC changes at 12 months. V20 and V30 were associated with FEV1 changes at 6 months and FVC changes at 12 months. Conclusion: After definitive CCRT in patients with NSCLC, MLD >15 Gy and lower lobe tumor location were predictors of grade ${\geq}2$ RP. Pulmonary functions were decreased after CCRT and the magnitude of changes was associated with DV parameters.

The Research about the Water Quality Prediction at Imha Reservoir Using a WASP7 Model (WASP7 모형을 이용한 임하호 수질모의에 관한 연구)

  • Ahn, Seung-Seop;Seo, Myung-Joon;Jung, Do-Joon;Park, Ro-Sam
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.611-621
    • /
    • 2008
  • This study intends to provide the necessary basic data needed for predicting the water quality and examining changes in water quality on the basis of the hydrological changes: an outflow or the character of a flow by investigating the interaction of the parameters through the estimation of optimal parameters need for predicting the water quality of the dam basin and the sensitivity among those estimated parameters. Im-Ha Dam in the upstream area of the Nakdong River was selected for analysis, and the water quality survey data necessary for parameter estimation was based on the monthly water quality data (water temperature, BOD, T-N and T-P) between December 1, $2005{\sim}$November 31, 2006. K1C(the saturated growth rate of plant plankton), K1RC (endogenous respiratory quotient of plankton), KDC(deoxidized ratio), K71C(minealized ratio of dissolved organic phosphorus), K83C(mineralized ratio of dissolved organic nitrogen) have been considered as the factors of the water quality performed in this water quality simulation, that is, the most effective parameters on BOD, T-N and T-P. In the result of the analysis of the sensitivity, KDC(deoxidized ratio) was the most sensitively reacted parameter on BOD and it was K71C(mineralized ratio of dissolved organic phosphorus) and K83C(mineralized ratio of dissolved organic nitrogen) on T-N and T-P. It is considered that it will be possible to apply the most optimal parameter to an analysis of the water quality simulation at Im-Ha Ho basin in the goal year by examining the interaction of the parameters through the parameters sampling which are able to applicable to prediction of the water quality and the analysis of the its sensitivity, in the future, also the analysis on the basis of the hydrological conditions: an outflow or the character of a flow will be needed.

Effect of Electrical Stimulation using ABR and ECochG Analysis based on Jastreboff Tinnitus Mocel (Jastreboff 이명 모델에서의 ABR과 ECochG 신호분석을 통한 전기자극의 효과)

  • 임재중;김경식;김남균;전병훈
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.471-477
    • /
    • 1999
  • Many researches have been performed whether electrical stimulation could be used for diagnosis and treatment on the auditory system impairment. Unfortunately, there were no standard methods or theoretical background for choosing stimulus conditions because of the lack of understanding on the transmission of electrical stimulation through the auditory pathway. This research was conducted to observe the effect of electrical stimulation on the tinnitus-induced animals. Nine guniea pigs were used for the experment and divided into two groups, five animals for the experimental group(A) and four animals for the control group(B). Experimental conditions were divided into four steps, before tinnitus induction and 1, 6, 12 hours after tinnitus induction using salicylate based on the Jastreboff model. In each experimental condition, ABR and ECochG were obtained, and autocorrelation coefficients were calculated from normalized waveforms based on rms values. Sum of all the autocorrelation coefficients was extracted as a parameter to observe the changes between before and after the electrical stimulation. As a result, ABR parameter values were rapidly increased 6 hours after tinnitus induction, the gradually returned back to the initial state. On the other hand, when electrical stimulation was applied, parameter values did not change compared with the initial sate. Parameter values of ECochG showed that the effect of electrical stimulation appeared 12 hours after the tinnitus induction. It was concluded that an electrical stimulation to the tinnitus-induced model changes the correlation coefficients of ABR and ECochG waveforms.

  • PDF

Potential Detection and Quality Properties of ${\gamma}-Irradiated$ Corn Starch of Korean and Chinese Origins by Viscosity Measurement during Storage (저장 기간 중 감마선 조사 옥수수 전분의 검지를 위한 점도 측정법의 적용과 품질특성)

  • Choi, Mal-Gum;Kwon, Joong-Ho;Kim, Hyun-Ku
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.173-181
    • /
    • 2003
  • Physicochemical changes in corn starch caused by irradiation were investigated, and irradiated samples were identified. Viscosity, TBA value, Hunter color, and total viable count were measured after irradiation of corn starch. Corn starches from Korea and China were irradiated at 0, 2.5, 5, 7.5, 10, and 15 kGy using a $Co^{60}$ irradiator and stored for 9 months at $0^{\circ}C$ and $20^{\circ}C$. Viscosity and specific parameter values decreased in all samples with increasing irradiation dosage at 50 rpm, showing a dose-dependent relationship $(above\;R^2=0.80)$ between non-irradiated and irradiated samples during storage. These results suggest that detection of irradiated corn starches is possible using viscometric method during storage. Total viable count, TBA value, and Hunter color were determined as supplemental indices for measuring viscosities of samples. Total viable count and TBA values showed dose-dependent relationship $(2.5{\sim}15 kGy)$. Differences in viscosity and total viable count, and TBA values among non-irradiated samples showed little changes with the lapse of post-irradiation time, but were still distinguishable for more than 6 months at $0^{\circ}C$ and $20^{\circ}C$ for corn starches from korea and China.

Real-time Control of Biological Animal Wastewater Treatment Process and Stability of Control Parameters (생물학적 축산폐수 처리공정의 자동제어 방법 및 제어 인자의 안정성)

  • Kim, W.Y.;Jung, J.H.;Ra, C.S.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.251-260
    • /
    • 2004
  • The feasibility and stability of ORP, pH(mV) and DO as a real-time control parameter for SBR process were evaluated in this study. During operation, NBP(nitrogen break point) and NKP(nitrate knee point), which reveal the biological and chemical changes of pollutants, were clearly observed on ORP and pH(mV)-time profiles, and those control points were easily detected by tracking the moving slope changes(MSC). However, when balance of aeration rate to loading rate, or to OUR(oxygen uptake rate), was not optimally maintained, either false NBP was occurred on ORP and DO curves before the appearance of real NBP or specific NBP feature was disappeared on ORP curve. Under that condition, however, very distinct NBP was found on pH(mV)-time profile, and stable detection of that point was feasible by tracking MSC. These results might mean that pH(mV) is superior real-time control parameter for aerobic process than ORP and DO. Meanwhile, as a real-time control parameter for anoxic process, ORP was very stable and more useful parameter than others. Based on these results, a stable real-time control of process can be achieved by using the ORP and pH(mv) parameters in combination rather than using separately. A complete removal of pollutants could be always ensured with this real-time control technology, despite the variations of wastewater and operation condition, as well as an optimization of treatment time and capacity could be feasible.

Design of a Direct Self-tuning Controller Using Neural Network (신경회로망을 이용한 직접 자기동조제어기의 설계)

  • 조원철;이인수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.4
    • /
    • pp.264-274
    • /
    • 2003
  • This paper presents a direct generalized minimum-variance self tuning controller with a PID structure using neural network which adapts to the changing parameters of the nonlinear system with nonminimum phase behavior, noises and time delays. The self-tuning controller with a PID structure is a combination of the simple structure of a PID controller and the characteristics of a self-tuning controller that can adapt to changes in the environment. The self-tuning control effect is achieved through the RLS (recursive least square) algorithm at the parameter estimation stage as well as through the Robbins-Monro algorithm at the stage of optimizing the design parameter of the controller. The neural network control effect which compensates for nonlinear factor is obtained from the learning algorithm which the learning error between the filtered reference and the auxiliary output of plant becomes zero. Computer simulation has shown that the proposed method works effectively on the nonlinear nonminimum phase system with time delays and changed system parameter.