• Title/Summary/Keyword: Parameter Change

Search Result 1,739, Processing Time 0.029 seconds

The Stress Analysis of the Cross Beam of the Electric Car-body according to the Change of Location and Shape of Circular Hole (원공 위치와 형상 변화에 따른 전동차 크로스 빔의 강도해석)

  • Jeon, Hyung-Yong;Sung, Rak-Won;Han, Geun-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.9-17
    • /
    • 1999
  • This investigation is the result of the structural analysis by finite element method for optimal design of the cross beam with circular holes of the electric car-body. in order to install the air pipe and electric wire pipe that correspond signal between electric machines for the control system and to reduce the weight of the electric car-body, several circular areas from a cross beam should be taken off. What we want to perform is the optimal design of a cross beam with circular holes to posses equal stress in comparison with no hole cross beam. first, no hole cross beam as basic modal be chosen, executing the analysis, reviewing the distribution of stress and displacement at each location. several parameter should be adopted from the cross beam geometry like the location and shape of the hole to affect the maximum stress and displacement. So the analysis was executed by finite element analysis for finding optimal design parameter to the change of the location and shape of the circular hole. finally, the optimal design of the cross beam with circular holes was obtained and the maximum equivalent stress was compared with no hole cross beam at each location.

  • PDF

Research on prediction and analysis of supercritical water heat transfer coefficient based on support vector machine

  • Ma Dongliang;Li Yi;Zhou Tao;Huang Yanping
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4102-4111
    • /
    • 2023
  • In order to better perform thermal hydraulic calculation and analysis of supercritical water reactor, based on the experimental data of supercritical water, the model training and predictive analysis of the heat transfer coefficient of supercritical water were carried out by using the support vector machine (SVM) algorithm. The changes in the prediction accuracy of the supercritical water heat transfer coefficient are analyzed by the changes of the regularization penalty parameter C, the slack variable epsilon and the Gaussian kernel function parameter gamma. The predicted value of the SVM model obtained after parameter optimization and the actual experimental test data are analyzed for data verification. The research results show that: the normalization of the data has a great influence on the prediction results. The slack variable has a relatively small influence on the accuracy change range of the predicted heat transfer coefficient. The change of gamma has the greatest impact on the accuracy of the heat transfer coefficient. Compared with the calculation results of traditional empirical formula methods, the trained algorithm model using SVM has smaller average error and standard deviations. Using the SVM trained algorithm model, the heat transfer coefficient of supercritical water can be effectively predicted and analyzed.

Test for Structural Change in ARIMA Models

  • Lee, Sang-Yeol;Park, Si-Yun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.279-285
    • /
    • 2002
  • In this paper we consider the problem of testing for structural changes in ARIMA models based on a cusum test. In particular, the proposed test procedure is applicable to testing for a change of the status of time series from stationarity to nonstationarity or vice versa. The idea is to transform the time series via differencing to make stationary time series. We propose a graphical method to identify the correct order of differencing.

  • PDF

Thickness control in metal-strip milling process (압연 공정에서의 판 두께 제어)

  • 신기현;홍환기;김광배;오상록;안현식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1141-1146
    • /
    • 1993
  • The problem of tension control in metal-strip processing line is discussed. A new mathematical dynamic model which relates tension change, motor-speed change and roll-gap change is developed. Through the computer simulation of this model, parameter sensitivity, the tension transfer phenominon, and static and dynamic characteristics of strip tension were studied. Guidelines are developed to help one selecting locations of the master-speed drive in multi-drive speed control for tension adjustment and reducing the effect of interaction between tension and roll gap control.

  • PDF

Potential Influence of Climate Change on Shellfish Aquaculture System in the Temperate Region

  • Jo, Qtae;Hur, Young Baek;Cho, Kee Chae;Jeon, Chang Young;Lee, Deok Chan
    • The Korean Journal of Malacology
    • /
    • v.28 no.3
    • /
    • pp.277-291
    • /
    • 2012
  • Aquaculture is challenged by a number of constraints with future efforts towards sustainable production. Global climate change has a potential damage to the sustainability by changing environmental surroundings unfavorably. The damaging parameters identified are water temperature, sea level, surface physical energy, precipitation, solar radiation, ocean acidification, and so on. Of them, temperature, mostly temperature elevation, occupies significant concern among marine ecologists and aquaculturists. Ocean acidification particularly draws shellfish aquaculturists' attention as it alters the marine chemistry, shifting the equilibrium towards more dissolved CO2 and hydrogen ions ($H^+$) and thus influencing signaling pathways on shell formation, immune system, and other biological processes. Temperature elevation by climate change is of double-sidedness: it can be an opportunistic parameter besides being a generally known damaging parameter in aquaculture. It can provide better environments for faster and longer growth for aquaculture species. It is also somehow advantageous for alleviation of aquaculture expansion pressure in a given location by opening a gate for new species and aquaculture zone expansion northward in the northern hemisphere, otherwise unavailable due to temperature limit. But in the science of climate change, the ways of influence on aquaculture are complex and ambiguous, and hence are still hard to identify and quantify. At the same time considerable parts of our knowledge on climate change effects on aquaculture are from the estimates from data of fisheries and agriculture. The consequences may be different from what they really are, particularly in the temperature region. In reality, bivalves and tunicates hung or caged in the longline system are often exposed to temperatures higher than those they encounter in nature, locally driving the farmed shellfish into an upper tolerable temperature extreme. We review recent climate change and following environment changes which can be factors or potential factors affecting shellfish aquaculture production in the temperate region.

Variables affecting strain sensing function in cementitious composites with carbon fibers

  • Baeza, F.J.;Zornoza, E.;Andion, L.G.;Ivorra, S.;Garces, P.
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.229-241
    • /
    • 2011
  • In this work, cement paste samples with 1% (by cement mass) of a conductive carbon fiber admixture have been studied under uniaxial compression. Three different arrangements were used to measure the resistivity of the samples. According to the results obtained, the resistance should be measured using the four wire method in order to obtain good sensitivity and repeatability. The effect of the load value and the load rate on the fractional change of the volume resistivity has been determined. It has been observed that the gage factor (fractional change in resistance respect to strain) increases when the maximum load is increased, and the loading rate does not affect significantly this parameter. The effect of the sample ambient humidity on the material piezoresistivity has also been studied, showing that the response of the composite is highly affected by this parameter.

A Study on Improvement of Torsional Vibration Characteristics of a Driveline Using a Module-Type-Vibration Analysis System (모듈형 진동 해석시스템을 이용한 구동계 비틀림 진동 특성 개선에 관한 연구)

  • Kim, Ki-Sei;Hwang, Won-Gul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.183-193
    • /
    • 1999
  • In the previous study, a module-type vibration analysis system using modular approach is developed for the purpose of analyzing the torsional vibration of vehicle driveline. In the present paper, the system is utilized to investigate the torsional vibration of the driveline of a middle duty truck. The driveline with driving condition is modeled and the torsional vibration response is simulated. The resonance 45Hz is found at engine speed 900rpm and the resultant vibration is very high. It shows favorable agreements with reference data. The effects of parameter change on torsional vibration are also investigated, so it is clarified that clutch characteristics, axle shaft stiffness are very influential on reduction of vibratio. So the countermeasure is proposed for the clutch characteristics. The reduction of torsonal vibration by 8rad/sec is obtained.

  • PDF

Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment

  • Ebrahimi, Farzad;Haghi, Parisa
    • Advances in nano research
    • /
    • v.6 no.3
    • /
    • pp.201-217
    • /
    • 2018
  • In the present research, wave propagation characteristics of a rotating FG nanobeam undergoing rotation is studied based on nonlocal strain gradient theory. Material properties of nanobeam are assumed to change gradually across the thickness of nanobeam according to Mori-Tanaka distribution model. The governing partial differential equations are derived for the rotating FG nanobeam by applying the Hamilton's principle in the framework of Euler-Bernoulli beam model. An analytical solution is applied to obtain wave frequencies, phase velocities and escape frequencies. It is observed that wave dispersion characteristics of rotating FG nanobeams are extremely influenced by angular velocity, wave number, nonlocal parameter, length scale parameter, temperature change and material graduation.

A design of Fuzzy PI+Fuzzy D Controller for Control of 3 Phase Induction Motor (3상 유도모터의 제어를 위한 퍼지 PI+퍼지 D 제어기의 구현)

  • Choo, Yeon-Gyu;Lee, Kwang-Seok;Kim, Hyun-Deok;Kim, Seung-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.713-716
    • /
    • 2007
  • In this paper, we consider one of robust control system, fuzzy PI+fuzzy D controller dealing with noise, load, changed parameters of plant. We apply PI+D controller with a design for output of differential function and, we plan fuzzy controller with input for PID parameter of PI+D controller so We design control system meet with the change of environment with robust in relation to change of parameter. Fuzzy control is possessed of easy 4 rules and membership function and We design fuzzy PI+fuzzy D controller. Plant of this paper make a choice of 3 phase induction motor.

  • PDF

Adaptive Control of a Class of Nonlinear Systems Using Multiple Parameter Models

  • Lee Choon-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.428-437
    • /
    • 2006
  • Many physical systems are hybrid in the sense that they have continuous behaviors and discrete phenomena. In control system with multiple models, switching strategy and stability of the closed-loop system under switching are very important issues. In this paper, a novel adaptive control scheme based on multiple parameter models is proposed to cope with a change in Parameters. Switching strategy guarantees the non-increase in the global control Lyapunov function if the estimation of Lyapunov function value converges. Least-square estimation is used to find the estimated value of the Lyapunov function. Switching and adaptation law guarantees the stability of closed-loop system in the sense of Lyapunov. Simulation results on anti-lock brake system are shown to verify the effectiveness of the proposed controller in view of a large change in system parameters.