• Title/Summary/Keyword: Paramagnetic effect

Search Result 75, Processing Time 0.026 seconds

Oxygen-Deficient Perovskite, (CaLa) (MgMn)O5.43 Prepared Under Oxygen Gas Pressure of 1 Bar (산소 1기압하에서 합성된 산소결함 Perovskite(CaLa)(MgMn)O$_{5.43}$의 물리화학적 특성연구)

  • 최진호;홍승태;김승준
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.8
    • /
    • pp.603-610
    • /
    • 1991
  • An oxygen deficient perovskite (CaLa)(MgMn)O5.43, with the cubic unit cell parameter of 3.826$\AA$, was prepared 115$0^{\circ}C$ for 10 hrs under the ambient oxygen gas pressure. The average oxidation state of manganese was determined to be 3.86 by the iodometric titration, so that the perovskite could be formulated as (CaLa) ({{{{ { MgMn}`_{ chi } ^{II } }}{{{{ { Mn}`_{ y} ^{III } }}{{{{ { Mn}`_{1- chi -y } ^{IV } }})O5.43 (2x+y=0.14). From X-ray photoelectron spectroscopy, the manganese ions in the lattice are mostly tetravalent, but two paramagnetic configurations were observed in the EPR spectrum: One sharp isotropic signal with hyperfines (ΔH 50 G, g=1.997$\pm$0.002 and │A│=82(4)$\times$10-4 cm-1) and a broad isotropic one (ΔH 1600 G, g=1.994$\pm$0.002), those which correspond respectively to Mn(II) and Mn(IV) ions. According to the magnetic susceptibility measurement, it follows the Curie-Weiss law from 20 K up to room temperature with $\mu$eff=5.23 $\mu$B, which is relatively larger than spin-only value({{{{ { mu }`_{eff} ^{s.o } }}=4.04 $\mu$B) due to the effect of weak ferromagnetic coupling. Such a result is in accord with a theory of semicovalence exchange.

  • PDF

HYDROGEN DECREPITATION AND MAGNETIC PROPERTIES OF $Sm_{2}Fe_{17}-TYPE$ ALLOY MODIFIED WITH A SMALL ADDITION OF Nb

  • Kwon, H.W.;Harris, I.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.432-436
    • /
    • 1995
  • The hydrogen decrepitation behaviour of the $Sm_{2}Fe_{17} alloy containing 4at%Nb was examined by means of DTA and SEM metallography, and the magnetic properties of the alloy were studied by means of VSM or TMA. It has been found that a simple hydrogenation and degassing treatment for the alloy caused a poor hydrogen decrepitation. The cycle treatment consisting of repeated hydrogenation and degassing, however, caused a severe hydrogen decrepitation with a combination of intergranular and transgranular failure. The disproportionation temperature of the hydrogenated $Sm_{2}Fe_{17}-type alloy was enhanced significantly by small addition of Nb. It has also been found that the Curie temperature of $Sm_{2}Fe_{17} matrix phase in the Nb-containing alloy has been enhanced by the hydrogenation, and this was attributed to the increase in interatomic distance between the neighbouring iron atoms caused by the interstitial occupancy of the hydrogen atom into the $Sm_{2}Fe_{17}-type lattice. The magnetisation of the $Sm_{2}Fe_{17} alloy containing Nbwas found to be lower than that of the Nb-free alloy, and this was explained by the dilution effect due to the presence of the paramagnetic $Sm_{2}Fe_{17} phase.

  • PDF

Ferromagnetism and Anomalous Hall Effect in p-Zn0.99Mn0.01O:P

  • Kim, Hyun-Jung;Sim, Jae-Ho;Kim, Hyo-Jin;Hong, Soon-Ku;Kim, Do-Jin;Ihm, Young-Eon;Choo, Woong-Kil
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.95-98
    • /
    • 2005
  • We report hole-induced ferromagnetism in diluted magnetic semiconductor $Zn_{0.99}Mn_{0.01}$ films grown on $SiO_2/Si$ substrates by reactive sputtering. The p-type conduction with hole concentration over $10^{18}\;cm^{-3}$ is achieved by P doping followed by rapid thermal annealing at $800^{\circ}C$ in a $N_2$ atmosphere. The p-type $Zn_{0.99}Mn_{0.01}O:P$ is carefully examined by x-ray diffraction and transmission electron microscopy. The magnetic measurements for $p-Zn_{0.99}Mn_{0.01}O:P$ clearly reveal ferromagnetic characteristics with a Curie temperature above room temperature, whereas those for $n-Zn_{0.99}Mn_{0.01}O:P$ show paramagnetic behavior. The anomalous Hall effect at room temperature is observed for the p-type film. This result strongly supports hole-induced room temperature ferromagnetism in $p-Zn_{0.99}Mn_{0.01}O:P$.

Magnetic Properties and Magnetocaloric Effect in Ordered Double Perovskites Sr1.8Pr0.2FeMo1-xWxO6

  • Hussain, Imad;Anwar, Mohammad Shafique;Khan, Saima Naz;Lee, Chan Gyu;Koo, Bon Heun
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.445-451
    • /
    • 2018
  • We report the structural, magnetic and magnetocaloric properties of $Sr_{1.8}Pr_{0.2}FeMo_{1-x}W_xO_6$($0.0{\leq}x{\leq}0.4$) samples prepared by the conventional solid state reaction method. The X-ray diffraction analysis confirms the formation of the tetragonal double perovskite structure with a I4/mmm space group in all the synthesized samples. The temperature dependent magnetization measurements reveal that all the samples go through a ferromagnetic to paramagnetic phase transition with an increasing temperature. The Arrott plot obtained for each synthesized sample demonstrates the second order nature of the magnetic phase transition. A magnetic entropy change is obtained from the magnetic isotherms. The values of maximum magnetic entropy change and relative cooling power at an applied field of 2.5 T are found to be $0.40Jkg^{-1}K^{-1}$ and $69Jkg^{-1}$ respectively for the $Sr_{1.8}Pr_{0.2}FeMoO_6$ sample. The tunability of magnetization and excellent magnetocaloric features at low applied magnetic field make these materials attractive for use in magnetic refrigeration technology.

A Study on Magnetic Properties of Amphiphilic Polymer Networks Nanocomposites by Mossbauer Spectroscopy (뫼스바우어 분광법에 의한 양친매성 고분자 망상구조 나노복합체의 자기적 성질 연구)

  • Yoon, In-Seop
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.6
    • /
    • pp.216-221
    • /
    • 2010
  • Magnetic nanocomposites contained iron oxide were synthesized by through cross-linking polymerization of dimethylacetamide (DMAc) solution and toluen solution on the amphiphilic polymer networks based on urethan acrylate nonionomer (UAN) precursor chains. For the study on microscopic structures and magnetic properties of the magnetic nanoparticles, FESEM and XRD and Mossbauer spectroscopy were used. The results investigated show that there are magnetic nanoparticles of $Fe_2O_3$ in samples and the magnetic nanocomposites contained iron oxide in polymer networks of UAN using DMAc solution are more smaller than using toluen solution. All of the Fe ions in the samples present $Fe^{3+}$ and the magnetic property of samples are paramagnetic by superparamagnetic effect at room temperature.

A study on Mossbauer Spectra of the $Ni_{1-x}Cd_xFeAlO_4$ system ($Ni_{1-x}Cd_xFeAlO_4$계의 Mossbauer 스펙트럼 연구)

  • 고정대;홍성락;백승도
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.4
    • /
    • pp.192-197
    • /
    • 1998
  • The Mossbauer spectra of the $Ni_{1-x}Cd_xFeAlO_4$ system were investigated with the Cd content x at room temperature. The spectra of the samples exhibit various patterns as follows 1) superparmagnetic relaxation for 0$\leq$x$\leq$0.2, 2) ferrimagnetic sextet for 0.3$\leq$x$\leq$0.5, 3) ferromagnetic relaxation for x=0.6, 0.7, 4) paramagnetic doublet for 0.8$\leq$x$\leq$1, with the Cd content x. In the samples with x values from 0 to 0.2, the substituted $Cd^{2+}$ ions transfer the $Al^{3+}$ ions from A-site to B-site mainly. The superparamagnetic relaxation effect and the ferromagnetic relaxation effect are derived from the $Al^{3+}$, $Cd^{2+}$ respectively. The magnetic structure of the $Ni_{1-x}Cd_xFeAlO_4$ system was explained by the Yafet-Kittel model.

  • PDF

Concentrating Effect of Heavy Metals from Heavy Metal Contaminated Soil by Magnetic Separation (중금속오염 토양의 자기분리에 의한 오염농축효과)

  • Kim, Jee-Eun;Kim, Jeong-Jin;Kim, Young-Hun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.311-320
    • /
    • 2014
  • A magnetic separation study was conducted for a soil sampled from a landfill site where steel slag had been dumped for a long time. Heavy metal concentrating effect was evaluated by analyzing heavy metal content of magnetically separated soil and passed through soil. The effect was compared between soil after soil-washing process and original landfill soil and the effect was also tested between wet condition-magnetic separation and dry condition-magnetic separation. Separated ratio was relatively higher in non-soil washed sample. The water content has no significant effect on the separation rate. The concentrating effect of Fe, Pb, Cu, and Cd were 3.2, 2.1, 12.1, 2.5, 1.5 and 17.4, 7.0, 15.7, 9.6, 7.0 respectively for non-soil washed sample and soil washed sample. We can expect a bigger volume reduction effect from soil-washed samples. The volume reduction effect was obtained from the separation in dry condition. However, when the separation ratio is too high the volume reduction effect decreases. The magnetic separation leads to a volume reduction and concentration of heavy metals into a portion of soil in case of paramagnetic particles contained soil.

A Study on the Thermal Behavior and Phase Transformation of Iron-bearing Minerals in Clay of Cheju Island by M ssbauer Effect (M ssbauer 효과에 의한 제주도 찰흙의 함철 광물의 열적 거동과 상변환에 관한 연구)

  • 강동우;김두철;류재연;고정대;홍성락;송관철
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.148-161
    • /
    • 1997
  • Based on the X-ray powder diffraction (XRD) and M ssbauer spectroscopy, the thermal behavior and phase transformations of two clays are investigated for raw and fired conditions, which are collected from Kwangryeongli and Ildo district in Cheju Island. M ssbauer spectra at room temperature and 20for two clays show that paramagnetic Fe3- is the structural iron of the layer silicate and ferrihydrite, and superparamagnetic goethite has about 50% of total iron contents. The XRD peaks of hematite for the fired clays appear from 80$0^{\circ}C$ in Kwangryeongli clay and from $600^{\circ}C$ in Ildo district clay, respectively. The structural Fe2+ was completely oxidized into Fe3- at 40$0^{\circ}C$ for Kwangryeongli clay and 50$0^{\circ}C$~$600^{\circ}C$ for Ildo district clay, respectively. The structural Fe2+ was completely oxidized into Fe3- at 40$0^{\circ}C$. For the temperature ranging from 40$0^{\circ}C$ to $700^{\circ}C$~80$0^{\circ}C$, two fired clays exhibit the dehydroxylation of the clay mineral. A disintegration of the clay mineral structure is observed from $700^{\circ}C$~80$0^{\circ}C$ to 110$0^{\circ}C$, followed by the onset and spread of vitrification process. It is also shown that well-crystallized hematite phase is formed at the temperature higher than 110$0^{\circ}C$ and the relative absorption area decreases, which might be related to the recrystallization of alluminosilicate matrix.

  • PDF

Effect of Crystallization Treatment on the Magnetic Properties of Amorphous Strips Based on Co-Fe-Ni-B-Si-Cr Containing Nitrogen

  • Cho H.J.;Kwon H.T.;Ryu H.H.;Sohn K.Y.;You B.S.;Park W.W.
    • Journal of Powder Materials
    • /
    • v.13 no.4 s.57
    • /
    • pp.285-289
    • /
    • 2006
  • Co-Fe-Ni-B-Si-Cr based amorphous strips containing nitrogen were manufactured via melt spinning, and then devitrified by crystallization treatment at the various annealing temperatures of $300^{\circ}C{\sim}540^{\circ}C$ for up to 30 minutes in an inert gas $(N_2)$ atmosphere. The microstructures were examined by using XRD and TEM and the magnetic properties were measured by using VSM and B-H meter. Among the alloys, the amorphous ribbons of $Co_{72.6}Fe_{9.8}Ni_{5.5}B_{2.4}Si_{7.1}Cr_{2.6}$ containing 121 ppm of nitrogen showed relatively high saturation magnetization. The alloy ribbons crystallized at $540^{\circ}C$ showed that the grain size of $Co_{72.6}Fe_{9.8}Ni_{5.5}B_{2.4}Si_{7.1}Cr_{2.6}$ alloy containing 121 ppm of nitrogen was about f nm, which exhibited paramagnetic behavior. The formation of nano-grain structure was attributed to the finely dispersed Fe4N particles and the solid-solutionized nitrogen atoms in the matrix. Accordingly, it can be concluded that the nano-grain structure of 5nm in size could reduce the core loss within the normally applied magnetic field of 300A/m at 10kHz.

Electrical resistivity and magnetization of Sr$_{1-x}K_xBiO_3$ superconductor in magnetic field: Observation of a reentrant superconducting resistive transition at low temperature

  • Kim, J.S.;Kim, D.C.;Joo, S.J.;Kim, G.T.;Lee, S.Y.;Khim, Z.G.;Bougerol-Chaillout, C.;Kazakov, S.M.;Pshirkov, J.S.;Antipov, E.V.;Park, Y.W.
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.210-213
    • /
    • 1999
  • Magnetoresistance and magnetization of Sr$_{l-x}K_xBiO_3$ were both measured as functions of temperature and magnetic field. Resistivity goes to zero at T=10.1K and the overall superconducting transition behavior under applied magnetic fields is similar to that of other BiO based superconductors. Also, below T<5K we have observed the reappearance of finite resistivity with a power law temperature dependence( ${\rho}$ ${\sim}$T$^1$); the reentrant superconducting transition of resistivity. Contrary to the Josephson weak link effect in polycrystalline samples, which gives the depression of the superconducting state with increasing electrical current or magnetic field, the superconducting state for T<5K is resumed by applying a higher current or magnetic field. Magnetic susceptibility( ${\chi}$ ) of Sr$_{l-x}K_xBiO_3$ for T<5K also shows similar trends to that observed in transport measurements: increase of ${\chi}$ (paramagnetic-like behavior) at a low magnetic fields(B=50 Oe) and, the resumption of perfect diamagnetism at high fields.

  • PDF