• Title/Summary/Keyword: Paraloid NAD-10

Search Result 7, Processing Time 0.018 seconds

A Study on Properties by Various Solvents of Acrylic Resin for Iron Artifact Conservation (철제유물 보존처리용 아크릴 수지의 용제별 특성 연구)

  • Cho, Hyun-Kyung;Cho, Nam-Chul
    • Journal of Conservation Science
    • /
    • v.24
    • /
    • pp.43-56
    • /
    • 2008
  • When we consolidate the iron artifacts, only we used VM&P Naphtha as solvent of paraloid NAD10. After consolidating the iron artifacts using paraloid NAD10, artifacts were too glossy to exhibit and see. We choose the solvent YK-VMP as solvent of paraloid NAD10 for complementing this defect and examined characterizations of paraloid NAD10 films in each solvent. As a result of evaluation by several surface analysis such as optical microscope, measuring film thickness, adhesive strength, gloss of surface, contact angle, yellowing test and EIS, it is possible to use YK-VMP instead of VM&P Naphtha as solvent of paraloid NAD10, because YK-VMP lowered surface gloss and did not change the effect of consolidation.

  • PDF

A Study on the Reaction Rate and Cause Analysis of Cyanoacrylate Adhesives According to the Coating Mixtures for Metal Artifacts (금속유물 코팅제와 Cyanoacrylate 접착제의 반응속도 및 원인분석: 초기접착속도를 중심으로)

  • Kwon, Hee-Hong;Huh, Il-Kwon;Kim, Soo-Ki
    • Journal of Conservation Science
    • /
    • v.27 no.2
    • /
    • pp.135-144
    • /
    • 2011
  • When metal artifacts have to undergo conservation treatment, the person in charge of the treatment selects and uses various coating mixtures based on his judgment regarding their condition, material, or environment. Since the kinds of coating mixtures or solvents make a difference in the set time of cyanoacrylate adhesives, they have something to do with the efficiency of the conservation treatment. This study examines the effects and causes that affect the set time of cyanoacrylate adhesives according to the kinds of coating mixtures and solvents and suggests ways to increase the set time. As a result, it is thought that as the surface roughness gets flatter, the wettability of adhesive is improved further, which increases the set time. Moreover, the C-F binding of V-Flon, C-O-C absorption peak, molecular weight of the coating mixtures, and glass transition temperature (Tg) were the factors that significantly affected the set time. According to the result of measuring the set time based on the result of superficial and chemical analysis, relative difference was shown according to the kind and viscosity of adhesive, but all the adhesives indicated the following order of the set time: V-Flon > Paraloid B-72 (in xylene) > Paraloid NAD-10 > Paraloid B-72 (in acetone).

Scientific Conservation of Horse Armour From Dohang-ri Site, Hamen (함안 도항리 출토 말갑옷(마갑)의 과학적 보존처리)

  • Wi, Koang-Chul
    • 보존과학연구
    • /
    • s.17
    • /
    • pp.20-38
    • /
    • 1996
  • Horse armour from Dohang-ri site had been retained its original form and all iron metal fragments of armour were very completely corroded without remaining metal core. Horse armour excavated is archaeologically very important, Also it should be maintained the original form. So, only moderate treatments such as brushing and consolidation techniques were performed. The processes for the conservation is as follows : 1) preliminary investigation, 2)removal of chlorides and corrosion products, 3) consolidation with 40% ParaloidNAD-10, 4) joining and restoration

  • PDF

Conservation of metal artifacts excavated from tumulus in Chodang-dong, Kangreung City (강릉시 초당동 고분 출토 금속유물 보존)

  • Yu, Jae-Eun
    • 보존과학연구
    • /
    • s.21
    • /
    • pp.77-99
    • /
    • 2000
  • Tumuli located in Chodang-dong in Kangreung City are sitesexcavated by the Museum of Kangreung University in 1993.Ofthese sites, a gilt bronze crown and gilt bronze sword with ring pommel with a tri-leaf ornament were excavated from the B-16tumulus. Underneath the gilt bronze crown was the gilt bronzes word with ring pommel with tri-leaf ornament, and these artifacts were treated with Polyurethane foams on the spot followed by special measures for conservation. This manuscript describes measures for conservation andanalysis with regard to the gilt bronze crown, gilt bronze sword with ring pommel with tri-leaf ornament and gilt bronze beltornaments. Bronze on the gilt bronze crown was completely corroded, therefore it was consolidated together with soil in the back of the artifact with Paraloid B72 after cleaning. Polyurethanefoams bottom was finished by applying the mixture of Epoxy resinAW106 and HV935K with soil. On the sword with ring pommel, the wooden part of the hilt was coated with Paraloid B72 (in Xylene) and the blade was consolidated with Paraloid NAD-10 30% after desalting with Sodium sesquicarbonate method. The gilt bronzebelt ornaments were treated with 3% Benzotriazole, coated with Paraloid B72 and then joined by using Cyanlacrylate. Specimens for the gilt bronze crown and gilt bronze belt ornaments were produced and gilding layers were examined under a metallographic microscope. The gilt bronze crown and the gilt bronze belt ornament maintained relatively good gilding quality with uniform gilding layers. Analysis of wood for the sheath of the sword with ring pommel revealed it to be Juglans mandshurica. Further more, analysis of constituents for a blue colored grassbead from dissolution of Polyurethane foams found it to be from the $Na_2O$-CaO-$AI_2O_3$-$SiO_2$ family.

  • PDF

Study on the Manufacturing techniques & Conservation of Iron Pot from Cheonmachong Ancient Tomb (천마총 출토 철부(鐵釜)의 제작기법 및 보존처리)

  • Lee, Seung Ryul;Shin, Yong Bi;Jung, Won Seob
    • Journal of Conservation Science
    • /
    • v.30 no.3
    • /
    • pp.263-275
    • /
    • 2014
  • It's shown how to proceed the study on Manufacturing techniques & Conservation to the Iron Pot from Cheonmachong Ancient Tomb(the 155th Tomb in Hwangnam-dong). In order to investigate manufacturing techniques of the Iron Pot, some parts of the relic were gathered. After mounting, polishing and etching on the relic, analyzing the metal microstructure was conducted. Also it's conducted a SEM-EDS analysis on the nonmetallic inclusion. White iron structure was observed in the metallurgical structure inspection, SEM-EDS analysis. It seems to be dried slowly at room temperature after casting, doesn't look as particular heat treatment to improve brittleness. It is estimated that it's as the handle seam side were verified about 3cm inch wide, 1.5 thick in center of body, so 2 separate half-completed products was cast with width-type mould. The manufacturing techniques Using white cast iron structure, width-type mould are observable to the Iron Pot excavated from Sikrichong Ancient Tomb & Hwangnamdaechong grand Ancient Tomb around those were constructed the same time. It's able to recognize that it's almost identical manufacturing techniques at that time. Conservation is generically following those are survey of pretreatment, foreign material removal, stabilization, restoration and color matching in the order. cleaning & drying were added to the process as occasion demands. The strengthening treatment were difficult with artifact's volume, low concentration Paraloid NAD-10 solution was spread two or three times with a brush, surface hardening also came up with 15wt% Paraloid NAD-10 solution after the conservation was complete. There were connection & restoration for the restoration to the damage after modeling forms that it's similar to damaged parts by using the Fiber Reinforced Plastic resins(POLYCOAT FH-245, mold laminated type). Throughout this research, capitalizing on accumulations of measurements about the production technique of Iron Pot in the time of the fifth and 6th centuries is no less important than the Iron artifact's conservation for a better study in the future.

The conservation of a gilt-bronze Sarira Reliquary, Treasure No. 955 (보물 제955호 선암사 금동팔각원당형사리탑 보존처리)

  • Go, Hyeong-Sun;Yu, Jae-Eun
    • 보존과학연구
    • /
    • s.24
    • /
    • pp.215-227
    • /
    • 2003
  • The gilt-bronze Sarira Reliquary was discovered when repairing three-stories east stone pagoda (Treasure No. 395) at Seungju-eup in Suncheon city in Jeollanam-do Province in August, 1986. Then it was appointed as Treasure in 1988. The Sarira Reliquary had been held in Seonamsa temple, but deterioration on the surface and corrosion had appeared affecting its surface detail. Consequently, the conservation treatment was carried out from November 2002 to March 2003.The corrosion and dirt on the surface of the Sarira Reliquary were cleaned with ethyl alcohol and Benzotriazole was applied to prevent further corrosion. Finally, NAD-10(Paraloid NAD-10), acrylic resin, was used to consolidate the structure. Moreover, after non-destructive analysis to confirm element of alloy, copper, gold, silver and mercury were discovered and this result tells us that it was plated with gold by amalgam. Fibers at the pedestal were examined under the microscope and identified as silk. The total height of this Sarira Reliquary is 6.0cm, the height of lotus pedestal and the roof is 2.7cm and 1.8cm, respectively. The roof and body are joined together, and the lotus pedestal can be separated, on which the octagonal reliquary is impaled. The pedestal consists of 3layers of petals and the surface is decorated with flower pattern. The reliquary is presumed to be created in the 14th century, and it becomes valuable historical material to reveal the secret of metal work in the late Goryeo Dynasty.

  • PDF

Conservation of gilt bronze locks (Treasure No. 1141) excavated from Hancheonsa temple (보물 제1141호 한천사 출토 금동자물쇠 보존처리)

  • Go, Hyeong-Sun;Yu, Jae-Eun;Lee, Jae-Seong
    • 보존과학연구
    • /
    • s.23
    • /
    • pp.149-162
    • /
    • 2002
  • Gilt bronze locks(Treasure No. 1141) excavated from Hancheonsa temple are artifacts of Goryeo Dynasty. The locks underwent a conservation process from October 2001 to July 2002. The process included cleaning and the application of corrosion inhibitors, Benzotriazolesolution, as well as reinforcement treatment with Paraloid NAD-10 solution,an acrylic resin. Non-destructive XRF analysis unveil that the artifacts are made of an alloy of copper(Cu), tin(Sn) and lead(Pb), but the gilt layer is too thin to analyze the purity of the gold or the exact production method. Gilt bronze locks are important materials because they preserve all the structures of locks in Goryeo Dynasty to the smallest detail. The surface pattern is revealed through the conservation process and components of the alloy through material analysis.

  • PDF