• Title/Summary/Keyword: Parallel-type mechanism

Search Result 89, Processing Time 0.089 seconds

A Two-Axis Ultra-precision Stage Using Flexure-type Parallel Linear Guide Mechanism (플렉셔 구조의 병렬형 선형 안내기구를 이용한 2 축 초정밀 스테이지)

  • Choi Kee-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.129-135
    • /
    • 2006
  • In this study, a two-axis ultra-precision stage driven by piezoelectric elements is presented. The stage has a flexure-type parallel linear guide mechanism consisting of quad-symmetric simple parallel linear springs and quad-symmetric double compound linear springs. While the simple parallel linear springs guide the linear motion of a moving plate in the stage, the double compound linear springs follow the motion of the simple parallel linear spring as well as compensate the parasitic motions caused by the simple parallel linear springs. The linear springs are designed by rectangular beam type flexures that are deformed by bending deflection rather than axial extension, because the axial extension is smaller than the bending deflection at the same force. The designed guide mechanism is analyzed by finite element method(FEM). Then two-axis parallel linear stage is implemented by the linear guide mechanism combined with piezoelectric elements and capacitance type displacement sensors. It is shown that the manufactured ultra-precision stage achieves 3 nm of resolution in x- and y-axis within 30 ${\mu}m$ of operating range.

Analysis of Parallel Mechanisms with Forward Position Closed-Form Solution with Application to Hybrid Manipulator (정위치 해석해를 가지는 병렬 메카니즘에 관한 분석과 혼합구조 매니퓰레이터로의 활용)

  • 김희국;이병주
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.324-337
    • /
    • 1999
  • In this work, a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. And a 6 DOF hybrid manipulator which consists of a 3-PPR type planar 3 DOF parallel mechanism and a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. Both 3 DOF mechanism modules have closed-form forward position solutions and particularly, 3-PSP spatial module has unique forward position solution. Firstly, the closed-form position analysis and first-order kinematic analysis for the proposed 3-PSP type module are carried out, and the first-order kinematic characteristics are examined via maximum singular value and the isotropic index of the mechanism. It is shown through these analyses that the mechanism has excellent isotrpic property throughout the workspace. Secondly, position and kinematic analysis of the 3-PPR planar module are briefly described. Thirdly, the forward position analysis for the 3-PPR 3-PSP type 6 degree-of-freedom hybrid mechanism consisting of a 3-PPR planar module and a 3-PSP spatial module is performed along with the analysis of the workspace size and first-order kinematic characteristics. The kinematic characteristics of the proposed hybrid manipulator are compared to those of geometrically similar Stewart manipulator.

  • PDF

A Forward Closed-Form Position Solution, Kinematic Analysis And Implementation of a Translational 3-DOF Parallel Mechanism Formed by Constraining a Stewart Platform Structure (스트워트 플랫폼 구조를 구속하여 얻어지는 병진형 3 자유도 병렬 메커니즘의 정위치 해석해와 기구학 해석 및 구현)

  • Shin Dong-Min;Chung Jae-Heon;Oh Se-Min;Yi Byung-Ju;Kim Whee-Kuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1035-1043
    • /
    • 2006
  • In this study, a translational 3-DOF parallel mechanism formed by constraining the Stewart Platform Mechanism is investigated. The translational 3-DOF parallel mechanism has three struts(3-UPS type serial subchains) and in addition, has a PPP type serial subchain in the middle of the mechanism. Firstly, the closed-form forward and reverse position solutions are derived for this mechanism. And analysis on kinematic characteristics using isotropic index of the Jacobian is conducted to examine effects of design parameters for the mechanism. Lastly, a prototype mechanism is implemented and the kinematic performance of the translational 3-DOF parallel mechanism was verified through experimental work.

A Piezo-Driven Miniaturized XY Stage with Two Prismatic-Prismatic Joints Type Parallel Compliant Mechanism (2 개의 병진-병진 관절형 병렬 탄성 메커니즘을 갖는 압전구동 소형 XY 스테이지)

  • Choi, Kee-Bong;Lee, Jae Jong;Kim, Gee Hong;Lim, Hyung Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1281-1286
    • /
    • 2013
  • In this paper, a miniaturized stage with two prismatic-prismatic joints (2-PP) type parallel compliant mechanism driven by piezo actuators is proposed. This stage consists of two layers which are a motion guide layer and an actuation layer. The motion guide layer has 2-PP type parallel compliant mechanism to guide two translational motions, whereas the actuation layer has two leverage type amplification mechanisms and two piezo actuators to generate forces. Since the volume of the stage is too small to mount displacement sensors, the piezo actuators embedding strain gauge sensors are chosen. With the strain gauge-embedded piezo actuators, a semi-control is implemented, which results in hysteresis compensation of the stage. As the results, the operating range of $30{\mu}m$, the resolution of 20 nm, and the bandwidth of 400 Hz in each axis were obtained in the experiments.

Synthesis and Analysis of a New Class of Spatial4-DOF Parallel Mechanism with Two Platforms (두 개의 플랫폼을 가지는 새로운 타입의 공간 4 자유도 병력기구의 조합 및해석)

  • Yoon, Jung-Won;Ryu, Je-Ha
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1482-1487
    • /
    • 2003
  • This paper presents a new family of 4-DoF parallel mechanism with two platforms. The new mechanism is composed of front and rear platforms, and three limbs. Two limbs with 6dof joint (P-P-S-P) are attached to the each platform and are perpendicular to baseplate, while the middle limb with 4-Dof joints (R-R-R-P or R-R-P-P) is attached to the revolute joint that connect front and rear platform. The two-DoF-driving mechanism at the middle limb with two base-fixed prismatic actuators can generate the heaving and roll motions or two translational motions. Therefore, Therefore, the new 4-Dof parallel mechanism (1T-3R) can generate pitch motions at each platforms, roll, and heaving motions, while another type of new 4-Dof parallel mechanism (2T-2R) can generate pitch motions at each platforms, x and z translational motions. For 1T-3R mechanism, kinematic analyses including inverse, forward kinematics, and Jacobian are performed.

  • PDF

Mechanism Design of Cane-like Passive Type Walking Aid For the Elderly Using 3-RPS Parallel Manipulator (3-RPS 평형기구를 이용한 노인용 지팡이형 보행보조기기 메커니즘 개발)

  • Kim, Jeong-Hun;Jang, Dae-jin;Park, Tae-Wook;Yang, Hyun-Seok;Lee, Sang-Moo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.725-730
    • /
    • 2004
  • This paper has regarded mechanism design of cane-like passive type walking aid for the elderly using 3-RPS parallel manipulator. First, gait patterns of the elderly have been experimented. By means of motion capturing and image processing, we decided loaded forces and places of the cane when the elderly walked with a cane. Using these results we have developed a passive type walking aid. Second, the walking pattern has been simulated using dynamic analysis program, ADAMS and we find out the similarity between the real walking and the simulated walking. Finally after assuring the similarity, with adjusting the new mechanism design to the simulated walking we will decide whether the walking aid is safe and stable when the elderly walks with this cane-like walking aid. This paper will be basis for the development of the mechanism design applying 3-RPS parallel manipulator.

  • PDF

Design of 3 DOF Parallel Micro Robot (3자유도 병렬형 마이크로 로봇 설계)

  • 나흥열;이병주;서일홍;김희국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.429-429
    • /
    • 2000
  • Micro positioning mechanism is the key technology in many fields, such as scanning electron microscopy (SEM), x-ray lithography, mask alignment and micro-machining. In the paper, a 3DOF parallel-type micro-positioning mechanism is proposed. This mechanism uses piezo-actuators and Flexure hinge to control x, y and $\theta$ motion. It is shown both analytically and numerically that 2 DOF flexure hinge model was better precision than 1 DOF flexure hinge design.

  • PDF

Kinematic of 7 D.O.F. Exoskeleton-Type Master Arm Estimating Human Arm's Motion (사람팔의 운동을 추정하는 7자유도 골격형 마스터암의 기구학 연구)

  • Sin, Wan-Jae;Park, Jong-Hyun;Park, Jahng-Hyeon;Park, Jong-Oh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.796-802
    • /
    • 2000
  • A master-slave system for teleoperation is usually used to control the robor's motion on remote place such as abyss, outer space etc.. When the slave robot is a humanoid one, it can make a better performance if the configuration of the master arm is similar to that of the slave arm and of the human. The master arm proposed in this paper has a type to be put on the human arm, that is, the exoskeleton type, and has a combination of serial joint and parallel mechanism imitating the human's arm structure of muscles and bones, so called hybrid mechanism so that it can follow arm's movement effectively. But it is easy to solve the forward kinematis of the parallel structure because relating equations are implicit functions. In order to solve that, the virtual joint angle corresponding to human arm's joint is introduced and a sequential computation step is employed in calculating virtual joint angles and the posture of the end effector. Also validity is checked up through computational simulation.

  • PDF

Analysis on Kinematic Characteristics for a Spherical 3-DOF Parallel Mechanism with Constrained Stewart Platform Structure (스튜워트 플랫폼 구조를 이용한 구형 3-자유도 병렬 메커니즘의 기구학 특성 분석)

  • 이석희;김희국;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.520-524
    • /
    • 2004
  • In this work, a novel spherical 3-dof parallel mechanism is proposed and analyzed. The mechanism consists of three RRPS serial subchains and an additional passive 3-dof type serial subchain. Three RRPS serial subchains alone may form a structure of 6-DOF Stewart Platform mechanism. However, in the proposed mechanism, an additional passive serial subchain acts as constraints to restrict the output motion of the mechanism within 3-DOF spherical space. The closed form solutions of position analysis of the proposed mechanism and its first-order kinematic model are derived. Then its workspace size and kinematic characteristics are examined via kinematic isotropic index.

  • PDF

Implementation of a New Parallel Spherical 3-Degree-of-Freedom Mechanism With Excellent Kinematic Characteristics (우수한 기구학 특성을 가지는 새로운 병렬형 구형 3자유도 메커니즘의 구현)

  • 이석희;김희국;오세민;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.299-303
    • /
    • 2004
  • In our pervious paper, a new parallel-type spherical 3-degree-of-freedom mechanism consisting of a two-degree-of-freedom parallel module and a serial RRR subchain was proposed[1]. In this paper, its improved version is suggested and implemented. Differently from the previous 3-dof spherical mechanism, gear chains are incorporated into the current version of the mechanism to drive the distal revolute joint of the serial subchain from the base of the mechanism and in fact, the modification significantly improves kinematic characteristics of the mechanism within its workspace. Firstly, after a brief description on its structure, the closed-form solutions of both the forward and the reverse position analysis are derived. Secondly, the first-order kinematic model of the mechanism for the inputs which are assumed to be located at the base is derived. Thirdly, through the simulations of the kinematic analysis via. kinematic isotropic index, it is confirmed that the mechanism has much more improved isotropic properties throughout the workspace of the mechanism than the previous mechanism in [1]. Lastly, the proposed mechanism is implemented to verify the results from this analysis.

  • PDF