• 제목/요약/키워드: Parallel-plate channel

검색결과 46건 처리시간 0.03초

유로형상 및 운전조건에 따른 고분자 전해질 연료전지의 성능 특성 (Performance Characteristics of PEMFC by flow Configurations and Operating Condition)

  • 이필형;조선아;한상석;황상순
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3440-3445
    • /
    • 2007
  • For proton exchange membrane fuel cell, it is very important to design the flow channel on separation plate optimally to maximize the current density at same electrochemical reaction surface and reduce the concentration polarization occurred at high current density. In this paper, three dimensional computation model including anode and cathode domain together was developed to examine effects of flow patterns and operation conditions such as humidity and operating temperature on performance of fuel cell. Results show that voltage at counter flow condition is higher than that at coflow condition in parallel and interdigitated flow pattern. And fuel cell with interdigitated flow pattern which has better mass transport by convection flow through gas diffusion layer has higher performance than with parallel flow pattern but its pressure drop is increased such that the trade off between performance and pressure drop should be considered for selection of flow pattern of fuel cell.

  • PDF

직교류 공랭식 판형열교환기의 성능평가 (Development of an Cross Flow Air-Cooled Plate Heat Exchanger)

  • 김민성;이재훈;박성룡;나호상;정재훈;임혁
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.235-240
    • /
    • 2007
  • Performance of an air-cooled plate heat exchanger (PHE) was evaluated in this study. The PHE was manufactured in two types of single-wave and double-wave plates in parallel assembly. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, prototype single-wave and double-wave PHEs were designed and tested in a laboratory scale experiments. From the tests, the double-wave PHE shows approximately 50% enhanced heat transfer performance compared to the single-wave PHE. However, the double-wave PHE costs 30% additional pressure drop. For the commercialization, a wide channel design for air flow would be essential for performance and reliability.

  • PDF

기판의 열확산에 의한 3차원 공랭모듈로부터의 열전달촉진에 관한 연구 (Enhancement of Heat Transfer from an Air-Cooled 3-Dimensional Module by means of Heat Spreading in the Board)

  • 박상희;홍택
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.1022-1030
    • /
    • 2002
  • The experiments were performed with a $31{\times}31{\times}7mm^3$ simulated 3-dimensional module on the thermal conductive board of a parallel plate channel. The convective thermal conductance for the path from the module surface directly to airflow and conjugate thermal conductance for the path leading from the module to the floor by way of a module support, then, to the airflow were determined with several combinations of module-support-construction(210, 0.32, 0.021 K/W)/floor-material(398, 0.236W/mK) and channel height(15-30mm). As the result, it was found that the conjugate thermal conductance and the temperature distribution around the module depend on the thermal resistance of the module support, and the channel height. These configurations were designed to investigate on the feasibility of using the substrate as an effective heat spreader in the forced convective air-cooling of surface mounted heat source. The experimental results were discussed in the light of interactive nature of heat transfer through two paths, one directed from the module to the airflow and the other via the module support and the floor to the air.

유동관성에 따른 Micro-Gap 판형 열교환기 내부 유동분배 수치해석 (Numerical Study of the Inertia Effect on Flow Distribution in Micro-gap Plate Heat Exchanger)

  • 박장민;윤석호;이공훈;송찬호
    • 대한기계학회논문집B
    • /
    • 제38권11호
    • /
    • pp.881-887
    • /
    • 2014
  • 본 연구에서는 micro-gap 판형 열교환기 내부의 열유동 특성에 대한 수치해석을 수행하였다. 특히 유량 조건에 따라 열교환기의 주 채널로부터 각 micro-gap 으로의 유동분배에 대한 유동관성의 영향에 대하여 조사하였다. 열교환기 주 채널의 유동을 레이놀즈 수 100 부터 10000 까지 변화시키며 그에 따른 각 micro-gap 으로의 유동분배와 온도분포의 불균일 정도를 평가하였다. 수치해석 결과 유동분배는 유동관성에 의해 크게 영향을 받는 것으로 나타났으며, 관성 효과를 감소시킬 수 있는 헤더 설계를 통해 유동분배 불균일 정도를 줄일 수 있었다. 또한 micro-gap 을 통과한 유체의 온도분포의 불균일 정도는 주유량이 증가함에 따라 증가 후 감소 추세를 나타냈다.

병렬 사형유로를 채택한 냉각판을 통한 고분자 전해질 연료전지의 균일 냉각에 대한 전산유체역학 해석 연구 (Computational Fluid Dynamics Study on Uniform Cooling of Polymer Electrolyte Membrane Fuel Cells by Parallel Multi-pass Serpentine Flow Fields)

  • 류승호;백승만;남진현;김찬중
    • 대한기계학회논문집B
    • /
    • 제34권10호
    • /
    • pp.885-891
    • /
    • 2010
  • 고분자 전해질 연료전지(PEMFC)의 열관리는 성능 향상과 내구성 측면에서 중요한 문제이다. 일반적으로 냉각수 순환 유로를 가진 냉각판이 여러 개의 단전지 사이에 삽입되어 PEMFC 내부에서 발생하는 반응열을 외부로 배출한다. 본 연구에서는 개선된 병렬 사형유로(MPSFF)를 향상된 냉각성능을 가진 냉각판 유로형상으로 제안하고, 이를 전산유체역학(CFD) 해석을 통하여 평가하였다. 비교를 위하여 냉각수 유로로 일반적으로 사용되는 사형유로 및 병렬형유로의 냉각성능에 대한 계산도 수행하였다. CFD 결과는 개선된 병렬 사형유로가 냉각판 표면에서의 온도의 비균일도를 상당히 감소시키고, 따라서 PEMFC의 내구성과 성능을 향상시킬 수 있음을 보여주었다.

수직평행채널의 벽면에 부착된 단일모듈로부터의 3차원 자연대류 열전달 (Three-Dimensional Natural Convection from a Single Module on the Wall of a Vertical Parallel-Plate Channel)

  • 유갑종;이진호;김현우
    • 태양에너지
    • /
    • 제19권3호
    • /
    • pp.29-41
    • /
    • 1999
  • 본 연구에서는 돌출된 단일 모듈이 부착된 수직 채널내의 3차원 자연대류 특성을 실험적으로 조사하였으며, 특히 모듈로부터 대류에 의한 열에너지 제거에 초점을 두었다. 채널내의 유동장은 smoke-method를 이용하여 가시화 하였다. 또한 채널내부, 수직벽면 및 모듈표면의 국소온도를 열전대와 열플럭스 센서를 이용하여 측정하여 복사와 전도에의한 열손실량을 계산하였다. 실험결과 대류열전달은 모듈 하부의 모서리 부근에서 가장 활발히 일어나고, 모듈 상부에서의 재순환영역은 열전달을 감소시킴을 알 수 있으며 임계 채널간격비를 예측할 수 있는 상관식을 레일리히수의 함수로 구하였다. 또한 $8.28{\times}10^3<Ra^*_c<3.48{\times}10^6$의 범위에서 수정 채널 레일리히수의 함수로써 평균 누셀트수와의 상관식을 구하였다.

  • PDF

마이크로 평판내 증발에 의한 확장초승달영역의 열/유동특성 (Flow and Heat Transfer Characteristics of the Evaporating Extended Meniscus in a Micro Parallel Plate)

  • 박경우;노관중;이관수
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.476-483
    • /
    • 2003
  • A mathematical model is presented to predict the two-phase flow and heat transfer phenomena of the evaporating extended meniscus region in a micro-channel. The pressure difference at the liquid-vapor interface can be obtained by the augmented Laplace-Young equation. The correlative equations for film thickness, pressure, and velocity in the meniscus region are derived by applying the mass, momentum, and energy equations into the control volume. The results show that increasing the heat flux and the liquid inlet velocity cause the length and liquid film thickness of the extended meniscus region to decrease. The variation, however, of the heat flux and liquid inlet velocity has no effect on the profile of film thickness. The majority of heat is transferred through the thin film region that is a very small region in the extended meniscus region. It is also found that the vapor velocity increases gradually in the meniscus region. However, it increases sharply at the junction of the meniscus and thin film regions.

휴대용 컴퓨터 내에 실장된 강제공랭 모듈 주위의 유체유동과 온도분포 (Fluid Flow and Temperature Distribution Around a Surface-Mounted Module Cooled by Forced Air Flow in a Portable Personal Computers)

  • 박상희;신대종
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.238-246
    • /
    • 2004
  • This paper reports an experimental study around a module about forced air flow by blower (35${\times}$35${\times}$6㎣) in a portable personal computer model(200${\times}$235${\times}$10㎣). Experimental report is to know three data to investigate thermal resistance, adiabatic wall temperature and visualized fluid flow around the module by combination of the moving number and the arrangement method of blower. The channel inlet flow velocity has been varied between 0.26, 0.52 and 0.78㎧, and input power ( $Q_{p}$) to the module is 4W. To investigate thermal resistance. the heated module is mounted on two boards(110${\times}$110${\times}$1.2㎣, k=20.73, 0.494W/ $m^{\circ}C$) in parallel-plate channel to forced air flow. The temperature distribution were visualized by heated module on acrylic board(k=0.262W/ $m^{\circ}C$) using liquid crystal film. Fluid flow around the module were visualized using particle image velocimetry system.

압전세라믹 냉각홴에 의한 강제 공랭 모듈 주위의 열전달특성 (Heat Transfer Characteristics Around a Surface-Mounted Module Cooled by Piezoelectric Fan)

  • 박상희;박규진;최성대
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.780-788
    • /
    • 2004
  • This paper reports the fluid flow and heat transfer around a module cooled by forced air flow generated by a piezoelectric(PZT) cooling fan. The fluids are locally accelerated by a flexible PZT fan which deflects inside a fluid transport system of comparatively simple structure mounted on a PCB in a parallel-plate channel(450${\times}$80${\times}$700㎣). Input voltages of 20-100V and a resonance frequency of 23㎐ were used to vibrate the cooling fan. Input power to the module was 4W. The fluid flow around the module was visualized by using PIV system. The temperature distributions around a heated module were visualized by using liquid crystal film(LCF). The cooling effect using a PZT fan was independent of the vent area ratios at the channel inlet and was similar to the forced convection cooling. We found that the flow type was Y-shape and the cooling effect was increased by the wake generated by a piezoelectric cooling fan.

가스터빈 연소실 냉각을 위한 충돌제트/유출냉각기법에서 사각핀 설치에 따른 열/물질전달 특성 (Heat/Mass Transfer Characteristics in Impingement/Effusion Cooling System with Rectangular Fins for Combustor Liner Cooling)

  • 홍성국;이동호;조형희
    • 한국유체기계학회 논문집
    • /
    • 제8권4호
    • /
    • pp.39-47
    • /
    • 2005
  • The present study has been performed to investigate the influences of rectangular fins on heat transfer in an impingement/effusion cooling system with crossflow. To simulate the impingement/effusion cooling system with initial crossflow, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter. The crossflow passes between the plates, and various rectangular fins are installed on the plates. Reynolds number based on the hole diameter is fixed to 10,000 and the flow rate of crossflow is changed from 0.5 to 1.5 times of that of the impinging jet. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. Also to analyze the flow characteristics, a numerical calculation is performed. When rectangular fins are installed, the flow and heat transfer pattern is changed greatly from the case without fins. In the injection hole region, the jet impinges on effusion plate without deflection and wall jet spreads symmetrically. In the effusion region, the crossflow accelerates due to the decrease of cross-sectional area in the channel. Local heat/mass transfer coefficients are enhanced significantly compared to the case without fins. As the blowing ratio increases, the effect of rectangular fins against the crossflow becomes more significant and then the higher average heat/mass transfer coefficients are obtained than the case without fins. However, the increase of blockage effect gives more pressure loss in the channel.