• Title/Summary/Keyword: Parallel-flow

Search Result 1,066, Processing Time 0.025 seconds

Large Eddy Simulation for the Analysis of Practical Combustion Field (실용 연소장 해석을 위한 대 와동 모사)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.181-188
    • /
    • 2005
  • Large eddy simulation(LES) methodology used to model the isothermal swirling flows in a dump combustor and the turbulent premixed flame in a model gas turbine combustor. The LES solver was implemented on parallel computer consisting 16 processors. In isothermal flow simulation, the results was compared with that of ${\kappa}-{\varepsilon}$ model as well as experimental data, in order to verify the capability of LES code. To model the turbulent premixed flame in a gas turbine, the G-equation flamelet model was used. The results showd that LES and RANS well predicted the mean velocity field of a non-swirling flow. However, in swirling flow, LES showed a better performance in predicting the mean axial and azimuthal velocities, and the central recirculation zone than those of RANS. In a model gas turbine combustor, the operation condition of high pressure and temperature induced the different phenomena, such as flame length and flow-field information, comparing with the condition of ambient pressure and temperature. Finally, it was identified that the flame and heat release oscillations are related to the vortex shedding generated by swirl flow and pressure wave propagation.

  • PDF

Ice-formation phenomena for laminar water flow in a stenotic tube (협착관내 층류유동에서 물의 결빙현상)

  • 서정세;김무근;노승탁;임장순
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.11-21
    • /
    • 1998
  • A numerical study is made on the ice-formation for water flow inside a stenotic tube. The study takes into account the interaction existing between the laminar flow and the stenotic port in the circular tube. In the solution strategy, the present study is substantially distinguished from the existing works In that the complete set of governing equations in both the solid and liquid regions are resolved. In a channel flow between parallel plates, the agreement of predictions and available experimental data is very good. Numerical results are mainly obtained by varying the height and length of a stenotic shape and additionally for several temperatures of the wall and inlet of tube. The results show that the shape of stenotic port has the great effect on the thickness of the solidification layer in the tube. As the height of a stenosis grows and the length of a stenosis decreases, the ice layer thickness near the stenotic port is thinner due to backward flow caused by the sudden expansion of water tunnel. It is also found that the ice layer becomes more fat In accordance with Reynolds number and the temperature of the wall and inlet of tube decreased.

  • PDF

A Matched Filter with Two Data Flow Paths for Searching Sychronization in DSSS (DSSS 동기탐색을 위한 이중 데이터 흐름 경로를 갖는 정합필터)

  • Song Myong-Lyol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1A
    • /
    • pp.99-106
    • /
    • 2004
  • In this Paper, the matched filter for searching initial synchronization in DSSS (direct sequence spread spectrum) receiver is studied. The matched filter with a single data flow path is described which can be presented by HDL (Hardware Description Language). In order to improve the processing time of operations for the filter, equations are arranged to represent two data flow paths and the associated hardware model is proposed. The model has an architecture based on parallelism and pipeline for fast processing, in which two data flow paths with a series of memory, multiplier and accumulator are placed in parallel. The performance of the model is analyzed and compared with the matched filter with a single data flow path.

An Experimental Study of Non-Steady State Seepage in the Levee Model by Parallel Water Flow (수평흐름에 의한 제방모형내의 비정상침투에 관한 실험적 연구)

  • Shin, Bang Woong;Lee, Bong Jik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1253-1263
    • /
    • 1994
  • The stability of the embankment is depended upon the location of seepage line. As the seepage flow occurs in the embankment, the slope of the embankment loses its stability. Of particular interest is the stability following a rapid change of embankment level. The variation of seepage line in the embankment model according to flow velocity was investigated. In addition to this non-steady state flow in embankment by a fluctuation of water level is discussed. The experimental model was construction with slopes of 1 : 2.5 and flow velocity is turned from 60 cm/sec~90 cm/sec. Analysis of the experimental results, the seepage line is influenced by flow velocity and coefficient of permeability.

  • PDF

Nanofluid flow and heat transfer from heated square cylinder in the presence of upstream rectangular cylinder under Couette-Poiseuille flow

  • Sharma, Swati;Maiti, Dilip K.;Alam, Md. Mahbub;Sharma, Bhupendra K.
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 2019
  • A heated square cylinder (with height $A^*$) is kept parallel to the cold wall at a fixed gap height $0.5A^*$ from the wall. Another adiabatic rectangular cylinder (of same height $A^*$ and width $0.5A^*$) is placed upstream in an inline tandem arrangement. The spacing between the two cylinders is fixed at $3.0A^*$. The inlet flow is taken as Couette-Poiseuille flow based non-linear velocity profile. The conventional fluid (also known as base fluid) is chosen as water (W) whereas the nanoparticle material is selected as $Al_2O_3$. Numerical simulations are performed by using SIMPLE algorithm based Finite Volume approach with staggered grid arrangement. The dependencies of hydrodynamic and heat transfer characteristics of the cylinder on non-dimensional parameters governing the nanofluids and the fluid flow are explored here. A critical discussion is made on the mechanism of improvement/reduction (due to the presence of the upstream cylinder) of heat transfer and drag coefficient, in comparison to those of an isolated cylinder. It is observed that the heat transfer increases with the increase in the non-linearity in the incident velocity profile at the inlet. For the present range studied, particle concentration has a negligible effect on heat transfer.

Analysis of Two Dimensional and Three Dimensional Supersonic Turbulence Flow around Tandem Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Lee Kyung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1256-1265
    • /
    • 2006
  • The supersonic flows around tandem cavities were investigated by two-dimensional and three-dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes (RANS) equation with the k- ω turbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split with van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge- Kutta method. The aspect ratios of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two- dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the first cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.

Distribution of Air-Water Two-Phase Flow in a Flat Tube Heat Exchanger (알루미늄 다채널 평판관 증발기 내 냉매분배)

  • Kim Nae-Hyun;Park Tae-Gyun;Han Sung-Pil;Lee Eung-Ryul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.800-810
    • /
    • 2006
  • The R-134a flow distribution is experimentally studied for a heat exchanger composed of round headers and 10 flat tubes. The effects of tube protrusion depth as well as mass flux, and quality are investigated, and the results are compared with the previous air-water results. The flow at the header inlet is stratified. For the downward flow configuration, the liquid distribution improves as the protrusion depth or the mass flux increases, or the quality decreases. For the upward configuration, the liquid distribution improves as the mass flux or quality decreases. The protrusion depth has minimal effect. For the downward configuration. the effect of quality on liquid distribution is significantly affected by the flow regime at the header inlet. For the stratified inlet flow, the liquid is forced to rear part of the header as the quality decreases. However, for the annular inlet flow, the liquid was forced to the frontal part of the header as the quality decreased. For the upward flow, the effect of the mass flux or quality on liquid distribution of the stratified inlet flow is opposite to that of the annular inlet flow. The high gas velocity of the annular flow may be responsible for the trend. Generally, the liquid distribution of the stratified inlet flow is better than that of the annular inlet flow. Possible explanation is provided from the flow visualization results.

Measurement of the Void Fraction in Slug Flow using an Optical Method (광학적 방법을 이용한 슬러그 유동의 기공률 측정)

  • Kim, Dong-Seon
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.2
    • /
    • pp.25-28
    • /
    • 2011
  • Void fraction has been measured for the gas-liquid cocurrent slug flow in 8mm vertical acrylic tube using an optical method. Bubble speed, length and period could be measured with the two sets of laser-infrared sensor modules mounted 25mm apart alongside the tube, which were designed to detect variation of light intensities with a time delay when two parallel laser beams were refracted successively by a passing bubble. It was found that the results were in good agreement with the previous studies in the literature suggesting that the method used in this study were sound and accurate.

  • PDF

Vortex Instability and Heat Transfer Correlations in the Natural Convection Flow over Inclined Isothermal flat Plates (경사진 등온 평판위 의 자연대류 유동 에서의 와류 불안정성 과 열전달 상관관계)

  • 최창균;유정열;이형인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.1
    • /
    • pp.10-17
    • /
    • 1984
  • The critical conditions marking the onset of thermally induced vortices over an inclined iso-thermal plate are investigated using the linear stability theory. The stability equations are simplified by estimating the orders of magnitude of respective terms. The analysis is carried out under the assumption that for the system of large Prandtl numbers temperature disturbances are initiated within the conventional thermal boundary layer of the basic flow. The stability criteria obtained from the present results agree well with those of the existing quasi-parallel flow models. In addition it is found that the critical conditions generate the heat transfer correlation in good agreement with experiments. Therefore, it is suggested that the validity of existing theoretical models will be reexamined.

액체미립화에 관한 실험적 연구

  • 이규영;신명순;양옥룡
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.4
    • /
    • pp.57-66
    • /
    • 1985
  • This paper deals with an experimental study on a liquid atomization to investigate the break- up mechanism of a liquid film flow which is formed by a high speed air flow in parallel direction and an atomization characteristics of a liquid film flow in order to provide the basic data for the development of the twin fluid atomizer. Authors had built the simplified, transparent new devices which can form a uniform thickness of liquid film and an electrical measuring circuit of the liquid film thickness. By introducing the new devices and the measuring circuit, the time variation of a liquid film thickness the mean diameter of the droplets, the droplet size distribution, the degree of the dispersion and the atomization rate of a liquid film are measured experimentally. As the analysis of the study, it can be said the experimental investigation will fairly contribute for further study in this field of study.

  • PDF