• Title/Summary/Keyword: Parallel switching

Search Result 415, Processing Time 0.024 seconds

A New Current Sharing Strategy of SRM Using Parallel Winding Method (병렬권선 방식에 의한 SRM의 부하전류분담)

  • 박성준;이동희;안진우;안영주
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.4
    • /
    • pp.154-160
    • /
    • 2003
  • The switched reluctance motor(SRM) has a considerable potential for industrial applications because of its high reliability as a result of the absence of rotor windings. In some applications with SRM, a parallel switching strategy is often used for cost saving, increasing of current capacity and system reliability. This paper proposes a new parallel switching strategy of SRM using parallel winding. While conventional parallel switching devices are connected in a phase winding, power devices are connected in the parallel windings wound in each pole of stator in the proposed method. Paralleling strategy for current sharing in the proposed method can be easily determined without considerations of any nonlinear characteristics of power devices such as conduction resistance, threshold voltage and gain factor. The proposed paralleling strategy is verified by the mathematical analysis and experimental results.

A New Current Sharing Strategy of SRM Using Parallel Winding Method (병렬권선 방식에 의한 SRM의 부하전류분담)

  • 박성준;이동희;안진우;안영주
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.154-154
    • /
    • 2003
  • The switched reluctance motor(SRM) has a considerable potential for industrial applications because of its high reliability as a result of the absence of rotor windings. In some applications with SRM, a parallel switching strategy is often used for cost saving, increasing of current capacity and system reliability. This paper proposes a new parallel switching strategy of SRM using parallel winding. While conventional parallel switching devices are connected in a phase winding, power devices are connected in the parallel windings wound in each pole of stator in the proposed method. Paralleling strategy for current sharing in the proposed method can be easily determined without considerations of any nonlinear characteristics of power devices such as conduction resistance, threshold voltage and gain factor. The proposed paralleling strategy is verified by the mathematical analysis and experimental results.

Development of Switching Power Module with Integrated Heat Sink and with Mezzanine Structure that Minimizes Current Imbalance of Parallel SiC Power Semiconductors (SiC 전력반도체의 병렬 구동 시 전류 불균형을 최소화하는 Mezzanine 구조의 방열일체형 스위칭 모듈 개발)

  • Jeong-Ho Lee;Sung-Soo Min;Gi-Young Lee;Rae-Young Kim
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • This paper applies a structural technique with uniform parallel switch characteristics in gates and power loops to minimize the ringing and current imbalance that occurs when a general discrete package (TO-247)-based power semiconductor device is operated in parallel. Also, this propose a heat sink integrated switching module with heat sink design flexibility and high power density. The developed heat dissipation-integrated switching module verifies the symmetry of the parasitic inductance of the parallel switch through Q3D by ansys and the validity of the structural technique of the parallel switch using the LLC resonant converter experiment operating at a rated capacity of 7.5 kW.

The study on the parallel operation of phase winding in the SR Drive for Electrical Vehicle Applications (전기자동차용 SRM의 상권선 병렬에 관한 연구)

  • Hong J.P.;Park S.J.;Won T.H.;Kwon S.J.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.115-120
    • /
    • 2003
  • In a motor driving, the current rate is directly related to the rate of a switching device and in cost reduction, the parallel switching operation is the alternatives because it has the smaller current rate through current division. There are many investigations for the parallel switching operations to equaling the current division. However it remains many problems for practical usage. The reason is that the switching characteristics are mainly relied on the different saturation voltage of each device etc. and these factors are not altered by circuit designer. In order to compensate this problem, a proper resistance is experimently inserted to the switching device. But this method can not be the optimal solution. Therefore this paper proposes a new parallel operation which uses a parallel phase winding to remove the traditional effect of switching device such as saturation voltage according to the division of current. Also the reliable and stable driving is improved through experiments and the detailed principles.

  • PDF

The Study on the Characteristics of the Load Sharing in SRM with the Parallel Operation of Phase Winding (병렬권선 운전시 SRM의 부하분담 특성에 관한 연구)

  • Lee S. H.;LIM H. H.;Park S. J.;Ahn J. W.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.24-28
    • /
    • 2002
  • In a motor driving, the current rate is directly related to the rate of a switching device and in cost reduction, the parallel switching operation is the alternatives because it has the smaller current rate through current division. There are many investigations for the parallel switching operations to equaling the current division. However it remains many problems for practical usage. The reason is that the switching characteristics are mainly relied on the different saturation voltage of each device etc. and these factors are not altered by a circuit designer. In order to compensate this problem, a proper resistance is experimently inserted to the switching device. But this method can not be the optimal solution. Therefore this paper proposes a new parallel operation which uses a parallel phase winding to remove the traditional effect of switching device such as saturation voltage according to the division of current. Also the reliable and stable driving is improved through experiments and the detailed principles.

  • PDF

The Study on the Parallel Operation of Phase Winding in the SRM (SRM의 상권선 병렬운전에 관한 연구)

  • Hong, Jeng-Pyo;Ahn, Jin-Woo;Kwon, Soon-Jae;Sohn, Mu-Heon;Kim, Jong-Dal;Kim, Cheul-U
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.141-148
    • /
    • 2002
  • In a motor driving, the current rate is directly related to the rate of a switching device and in cost reduction, the parallel switching operation is the alternatives because it has the smaller current rate through current division. There are many investigations for the parallel switching operations to equaling the current division. However it remains many problems for practical usage. The reason is that the switching characteristics are mainly relied on the different saturation voltage of each device etc. and these factors are not altered by circuit designer. In order to compensate this problem, a proper resistance is experimently inserted to the switching device. But this method can not be the optimal solution. Therefore this paper proposes a new parallel operation which uses a parallel phase winding to remove the traditional effect of switching device such as saturation voltage according to the division of current. Also the reliable and stable driving is improved through experiments and the detailed principles.

  • PDF

Paralling of SRM Drive System using Novel Switching Pattern (새로운 스위칭 패턴을 사용한 SRM의 병렬권선 운전)

  • Kim Tae-Hyung;Lee Dong-Hee;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.918-921
    • /
    • 2004
  • In a motor drive, the current rating is directly related to the rating of a switching device, and the parallel switching operation for a cost reduction is the alternatives because it has the smaller current rating through current division. There are many investigations for the parallel switching operations to equaling the current division. However it remains many problems for practical usage. This paper proposes a new parallel operation which uses a parallel phase winding to remove the traditional effect of switching device such as saturation voltage according to the division of current. The proposed strategy is verified by theoretical and experimental results.

  • PDF

The Study on the Characteristics of the Load Sharing in SRM with the Parallel Operation of Phase Winding (병렬권선 운전시 SRM의 부하분담 특성에 관한 연구)

  • Lee, Sang-Hun;Park, Sung-Jun;Choi, Cheol;Ahn, Jin-Woo;Kim, Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.30-39
    • /
    • 2003
  • In SRM driving, the current rate is directly related to the rate of switching device and in cost reduction, the Parallel switching operation is the alternatives because it has the smaller current rate through current division. There ire many investigations for the parallel switching operations to equaling the current division. However it remains many problems for practical usage. The reason Is that the switching characteristics are mainly relied on the different saturation voltage of each device etc. and these factors are not altered by a circuit designer. In order to compensate this problem, a proper resistance is experimently inserted to the switching device. But this method can not be the optimal solution. Therefore this paper propose a new parallel operation of SRM which uses a parallel phase winding to remove the traditional effect of switching device such as saturation voltage according to the division of current. Also the reliable and stable driving is improved through experiments and the detailed principles.

Characteristics of Parallel Winding Drive of SRM (SRM의 병렬권선 운전 특성)

  • Hwang, Hyung-Jin;Park, Sung-Jun;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.66-68
    • /
    • 2003
  • In a motor drive, the current rating is directly related to the rating of a switching device, and the parallel switching operation for a cost reduction is the alternatives because it has the smaller current rating through current division. There are many investigations for the parallel switching operations to equaling the current division. However it remains many problems for practical usage. This paper proposes a new parallel operation which uses a parallel phase winding to remove the traditional effect of switching device such as saturation voltage according to the division of current. The proposed strategy is verified by theoretical and experimental verification.

  • PDF

Self-Oscillating Switching Technique for Current Source Parallel Resonant Induction Heating Systems

  • Namadmalan, Alireza;Moghani, Javad Shokrollahi
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.851-858
    • /
    • 2012
  • This paper presents resonant inverter tuning for current source parallel resonant induction heating systems based on a new self oscillating switching technique. The phase error is suppressed in a wide range of operating frequencies in comparison with Phase Locked Loop (PLL) techniques. The proposed switching method has the capability of tuning under fast changes in the resonant frequency. According to this switching method, a multi-frequency induction heating (IH) system is proposed by using a single inverter. In comparison with multi-level inverter based IH systems, the advantages of this technique are its simple structure, better transients and wide range of operating frequencies. A laboratory prototype was built with an operating frequency of 35 kHz to 55 kHz and 300 W of output power. The performance of the IH system shows the validity of the new switching technique.