• Title/Summary/Keyword: Parallel pipeline

Search Result 172, Processing Time 0.023 seconds

REDUCTION OF PRESSURE RIPPLES USING A PARALLEL LINE IN HYDRAULIC PIPELINE

  • KIM K. H.;JANG J. S.;JUNG D. S.;KIM H. E.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.65-70
    • /
    • 2005
  • Pressure ripples, which are inevitably generated by a fluctuation of flow rate caused by a pump mechanism, include noises and vibrations in hydraulic pipeline. These noises and vibration deteriorate the stability and accuracy of hydraulic systems. The accumulator and hydraulic attenuator are normally used to reduce the pressure ripples. In this study, a parallel line is introduced to the hydraulic pipeline for the hydraulic system with a bent-axis piston pump as a method to reduce the pressure ripples. The dynamic characteristics of the hydraulic pipeline with a parallel line are analyzed by a transfer matrix in the frequency domain. The usefulness of the hydraulic pipeline with a parallel line was ascertained by experiment and simulation. The results from the experiment and simulation show that the hydraulic pipeline with a parallel line were effective in reducing the pressure ripples.

Method for Reduction of Pressure Ripples using the Parallel Pipeline in Fluid Pipeline (분지를 이용한 유압관로계의 압력맥동 저감 방안)

  • 이규원;장주섭;김경훈;윤영환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.299-302
    • /
    • 1997
  • The pressure ripples are inevitabilitily generated by a fluctuation of flow rate caused pump mechanism, which occur noises, vibrations, and affect a control performance in tluid pipeline. The method for reduction of pressure ripples has been normally used a accumulator which is installed near the pump generating the pressure ripples. This paper introduces the parallel pipeline as a method to reduce pressure ripples in tluid pipeline, and confirms the usefulness of it in reducing the pressure ripples as compared with the fluid pipeline with a accumulator using AMESim(Advanced Modeling Environment for Simulations) Software.

  • PDF

Fatigue Crack Growth Behavior for Welded Joint of X80 Pipeline Steel

  • Kim, Young-Pyo;Kim, Cheol-Man;Kim, Woo-Sik;Shin, Kwang-Seon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • The fatigue crack growth behavior of high strength X80 pipeline steel was investigated with compact tension specimens that crack growth directions were aligned either parallel or normal to the rolling direction of the pipeline. Also, the fatigue crack growth rates for welded joint of X80 pipeline steel were investigated with compact tension specimens that crack growth directions were aligned either parallel or normal to the welding line. The experimental results indicated the fatigue crack growth behavior was markedly different in three zones, weld metal, heat affected zone and base metal of welded joints. There was a trend toward increment in the fatigue life of weld metal and heat affected zone as compared with the X80 pipeline steel.

A research on the design parameters for a double-transmission main system for sustainable water supply (이중송수관로를 이용한 안정적인 송수를 위한 설계인자에 관한 연구)

  • Hyun, Inhwan;Hong, Juneui;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.129-138
    • /
    • 2013
  • Water interruption is often caused by a rupture in the branch-like singular pipeline. This will cause critical complaints from household and may decrease public service quality. As an alternative of singular pipeline, additional parallel pipeline could be installed for sustainable water supply. This system is called double pipeline system and able to be utilized for water transmission line between treatment plant and distribution reservoir. Construction of double pipeline was thought to increase capital cost, which can be an issue to waterworks authorities. Reducing capital cost was possible by means of installing connectors between two parallel pipelines because of reduced diameter of each pipe. To obtain optimal design condition for connectors, it was necessary to compare water pressure according to accident location, to investigate flow according to connection pipe spacing, connection pipe diameter, and aging of pipe. Reliable and economical connection layouts were determined based on these results. The cost estimation for each design condition was carried out. Cost was approximately reduced by 20 ~ 30 % compared to the double pipeline without connections. In addition to this, connection between double pipelines could expect extra benefits for maintenance since the pipe could be repaired and rehabilitated without interruption.

Diagnosing Plant Pipeline System Performance Using Radiotracer Techniques

  • Kasban, H.;Ali, Elsayed H.;Arafa, H.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.196-208
    • /
    • 2017
  • This study presents an experimental work in a petrochemical company for scanning a buried pipeline using $Tc^{99m}$ radiotracer based on the measured velocity changes, in order to determine the flow reduction along a pipeline. In this work, $Tc^{99m}$ radiotracer was injected into the pipeline and monitored by sodium iodide scintillation detectors located at several positions along the pipeline. The flow velocity has been calculated between every two consecutive detectors along the pipeline. Practically, six experiments have been carried out using two different data acquisition systems, each of them being connected to four detectors. During the fifth experiment, a bypass was discovered between the scanned pipeline and another buried parallel pipeline connected after the injection point. The results indicate that the bypass had a bad effect on the volumetric flow rate in the scanned pipeline.

Pipelined Parallel CRC (파이프라인 구조를 적용한 병렬 CRC 회로 설계)

  • Kim, Ki-Tae;Yi, Hyun-Bean;Park, Sung-Ju;Park, Chang-Won
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.789-792
    • /
    • 2005
  • In this paper, we propose a method that applies pipeline architecture to parallel CRC circuits. We developed a logic partitioning algorithm for applying pipeline architecture. Our algorithm can be used for the polynomial and the input data width, both of arbitrary length and minimize the logic level. Design experiments show the superiority of our approach in reducing the delay in comparison with previous works.

  • PDF

A Study on Viscous Flow around a Pipeline between Parallel Walls by the Numerical Simulation (수치 시뮬레이션을 통한 평판내 파이프라인 주위의 점성유동 연구)

  • Kwag, Seung-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.473-478
    • /
    • 2003
  • Numerical study was made on the flow characteristics around a circular pipeline between parallel walls. The incompressible Navier-Stokes equations were solved by using a third-order upwind differential scheme. When the distance near a wall is small enough, the vortex shedding is almost completely suppressed because of the interaction with the wall boundary layer separation. This study aims to clarify the characteristics of the vortex shedding regime as the body approaches a wall as Reynolds number varies. The feature of separated vorticity dynamics is analyzed at different conditions with particular attention to the interaction between the pipeline wake and the induced separation on the plane walls.

Design of a SIMT architecture GP-GPU Using Tile based on Graphic Pipeline Structure (타일 기반 그래픽 파이프라인 구조를 사용한 SIMT 구조 GP-GPU 설계)

  • Kim, Do-Hyun;Kim, Chi-Yong
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.75-81
    • /
    • 2016
  • This paper proposes a design of the tile based on graphic pipeline to improve the graphic application performance in SIMT based GP-GPU. The proposed Tile based on graphics pipeline avoids unnecessary graphic processing operation, and processes the rasterization step in parallel. The massive data processing in parallel through SIMT architecture improve the computational performance, thereby improving the 3D graphic pipeline performance. The more vertex data of 3D model, the higher performance. The proposed structure was confirmed to improve processing performance of up to 3 times from about 1.18 times as compared to 'RAMP' and previous studies.

Parallel implementation of a neural network-based realtime ATR system using a multicomputer (다중컴퓨터를 이용한 신경회로망 기반 실시간 자동 표적인식시스템의 병렬구현)

  • 전준형;김성완;김진호;최흥문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.197-208
    • /
    • 1996
  • A neural network-based PSRI(position, scale, and rotation invariant) feature extraction and ATR (automatic target recognition) system are proposed and an efficient parallel implementatio of the proposed system using multicomputer is also presented. In the proposed system, the scale and rotationinvariant features are extracted from the contour projection of the number of edge pixels on each of the concentric circles, which is input t the cooperative network. We proposed how to decide the optimum depth and the width of the parallel pipeline system for real time applications by modeling the proposed system into a parallel pipeline implementation method using transputers is also proposed. The implementation results show that we can extract PSRI features less sensitive to input variations, and the speedup of the proposed ATR system is about 7.55 for the various rotated and scaled targets using 8-node transputer system.

  • PDF

Performance Enhancement of Parallel Prime Sieving with Hybrid Programming and Pipeline Scheduling (혼합형 병렬처리 및 파이프라이닝을 활용한 소수 연산 알고리즘)

  • Ryu, Seung-yo;Kim, Dongseung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.10
    • /
    • pp.337-342
    • /
    • 2015
  • We develop a new parallelization method for Sieve of Eratosthenes algorithm, which enhances both computation speed and energy efficiency. A pipeline scheduling is included for better load balancing after proper workload partitioning. They run on multicore CPUs with hybrid parallel programming model which uses both message passing and multithreading computation. Experimental results performed on both small scale clusters and a PC with a mobile processor show significant improvement in execution time and energy consumptions.