• Title/Summary/Keyword: Parallel kinematic

Search Result 211, Processing Time 0.027 seconds

Manipulability Analysis of a New Parallel Rolling Mill Based upon Two Stewart Platforms

  • Lee, Jun-Ho;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.107.5-107
    • /
    • 2002
  • In this paper, a kinematic optimal design of a new paralleltype rolling mill based upon two Stewart platforms manipulator is investigated. The objective of this new parallel-type rolling mill is to permit an integrated control of the strip thickness, strip shape, pair crossing angle, uniform wear of the rolls, and tension of the strip. A manipulability measure, as the ratio of the manipulability ellipsoid volume and the condition number of a split Jacobian matrix, is defined. Two kinematic parameters, the radius of the base and the angle between two neighboring joints, are optimally designed by maximizing the global manipulability measure in the entire workspace.

  • PDF

Kinematic Modeling of Mobile Robots by Transfer Method of Generalized Coordinates (좌표계 전환기법을 활용한 모바일 로봇의 기구학 모델링)

  • 김도형;김희국;이병주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.44-44
    • /
    • 2000
  • Firstly, kinematic model of various type of wheels which includesskidding and skidding friction are presented. Tend, the transfer method of generalized coordinates which is useful to model the parallel mechanisms, can be applied to mobile robot by including such friction terms. Particularly, by appling the modeling method to mobile robot consisting of two conventional wheels and one caster wheel, forword/reverse kinematic modeling could be obtained without using pseudoinverse solutions.

  • PDF

Analysis and Design of 3-DOF Parallel Mechanism Based on Kinematic Couplings (기구학적 커플링으로 구성된 3자유도 병렬 메커니즘 해석 및 설계)

  • Wang, Wei-Jun;Han, Chang-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.479-486
    • /
    • 2012
  • This paper presents a high-speed automatic micro-alignment system that is a part of an inspection machine for small-sized molded lenses of mobile phones, palm-top computers, and so on. This work was motivated by the shortcomings of existing highest-grade commercial machine. A simple tip/tilt/Z parallel mechanism is designed based on kinematic couplings, which is a 3-degree-of-freedom (3-DOF) moderate-cost alignment stage. It is used to automatically adjust the posture of each lens on the tray, which is impossible by the conventional instrument. Amplified piezoelectric actuators are used to ensure the accuracy and dynamic response. Forward kinematic analysis and simulation show that the parasitic motion is small enough compared to the actuator stroke. From the workspace analysis of the moving platform, it is clear that the output motion range satisfies the design requirements.

Development of 6 DOF Positioning Manipulator Using Closed Loop Structure and Its Kinematic Analysis (폐루프 구조를 가지는 6 자유도 머니퓰레이터의 개발 및 기구학적 해석)

  • 김경찬;우춘규;김수현;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.60-68
    • /
    • 1998
  • Parallel link manipulators have an ability of more precise positioning than serial open-loop manipulators. However. general parallel link manipulators have been restricted to the real applications since they have limited workspace due to interference among actuators. In this study, we suggest a closed-loop manipulator with 6 degrees-of-freedom and with enlarged workspace. It consists of two parts for minimizing the interference among actuators. One part is lower structure with planar 3 degrees-of-freedom and the other is upper one with spatial 3 degrees-of-freedom. Forward kinematics and inverse kinematics are solved, research about singularity points are carried out and workspace is evaluated. The comparison of workspace between Stewart platform, which is the typical parallel link manipulator, and the suggested manipulator shows that the workspace of the latter is wider than that of the former. Especially, simulation results also show that the suggested manipulator is more suitable when there needs rotation in the end-effector.

  • PDF

Study on the Precision Characteristics of a Planar 3 Degrees-of-Freedom Parallel Mechanism (평면형 3 자유도 병렬 메카니즘의 정밀도 특성에 관한 연구)

  • Kim, Jae-Sub;Kim, Hee-Guk;Cho, Hwang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.781-786
    • /
    • 1996
  • In this paper, output precision characteristic of planar 3 and 6 degree-of-freedom parallel mechanisms are investigated. The 6 degree-of-freedom mechanism is formed by adding an additional small link along with an actuated joint in each of serial subchain of the 3 degree-of-freedom mechanism. First, kinematic analysis for two parallel mechanisms are performed, then their first-order kinematic characteristics are examined via isotropic index and minimum velocity transmission ratio of the mechanisms. It can be concluded that the planar 6 degrees-of-freedom parallel mechanism can be very effectively employed as a high-precision macro-micro manipulator from the analysis results when its link lengths are properly chosen.

  • PDF

Kinematic Modeling of a Car-like Planar Mobile Robot with Four Fixed Wheels (네 개의 고정 바퀴가 장착된 자동차 구를 평면형 모바일 로봇의 기구학 모델링)

  • Lee, Seung-Eun;Kim, Hui-Guk;Lee, Byeong-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.28-35
    • /
    • 2002
  • This paper deals with kinematic modeling of a car-like planar mobile robot consisting of four conventional fixed wheels attached on two parallel axles. The kinematic model of such a mobile robot requires the description of skidding and sliding frictional motion. Previous kinematic model proposed by Muir and Newman$^{[1]}$ does not include such frictional motions. Thus, does it result in least square solution in estimating a sensed forward velocity solution. A modified kinematic model is proposed by incorporating transnational friction motion into the original algorithm. It is shown that transnational friction motions should be included into kinematic model of the mobile robot to represent its real physical motion.

Design of a Machine Tool containing a 3-strut Parallel Kinematic Structure (병렬구조 머시닝센터 설계기술)

  • Kim, Tae-Jung;Kim, Suk-Il;Nah, Seung-Pyo;Kim, Ki-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.878-885
    • /
    • 2011
  • A kinematically-hybrid 5-axis machine tool is analyzed from the perspective of machine tool design. Its kinematic characteristics are pointed out, which should be considered during the conceptual design process. A result of the structural analysis of the machine is presented, which is performed during the detailed design process. It is also presented how we improve the thermal characteristics of the machine tool by changing the installation position of the actuators.

A Study on the Design of High-speed Parallel Robot (고속 병렬 로봇의 설계에 관한 연구)

  • Kim, Byung In;Kyung, Jin Ho;Do, Hyun Min;Jo, Sang Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1069-1077
    • /
    • 2013
  • These days, the interest of high speed robotic system is increasing because it is very important to get the cost-competitiveness. The parallel kinematic mechanism is more useful than the serial kinematic mechanism. For the reason, the researches on the parallel robot system as a high speed robotic one are have been done by many researchers. In this paper, the research on the design and analysis of the high speed parallel robot has been done by the authors. First, Basic robot structure is designed and modal analysis is studied to get the basic characteristics of the vibrational motion. Second, the harmonic analysis is studied to get the information of the natural frequency in some different designs of the outer-arm of the parallel robot. Finally, actual robot system is designed and implemented and it is confirmed that the analysis results coincide with the experimental results.

The Forward Kinematics Solution for Casing Oscillator Using the Kinematic Inversion (기구학적 전이를 이용한 케이싱 오실레이터의 순기구학 해석)

  • 배형섭;백재호;박명관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.130-139
    • /
    • 2004
  • The Casing Oscillator is a bore file Equipment for the all-casing process. All-casing process is a method of foundation work in construction yard to oscillate steel Casing in the ground. The existing Casing Oscillator has some problem like not boring horizontally with disturbance and not driving Casing othor angle except horizon. To solve problem, the new structure Casing Oscillator is presented and studied. The performance of Casing Oscillator is improved by kinematics analysis. The Casing Oscillator is similar to the parallel manipulator in structure. So we obtain Inverse kinematics solution of Casing Oscillator easily. But it is difficult to solve forward kinematics of Casing Oscillator. T his paper presents a novel pose description corresponding to the structure characteristics of parallel manipulators. Through analysis on geometry theory, we obtain a new method of the closed-form solution to the forward kinematics using Kinematic Inversion. The closed-form solution contains two different meanings -analytical and real-time. So we reach the goal of practical application and control. Closed-form forward kinematics solution is verified by an inverse kinematics analysis. It shows that the method has a practical value for real -time control and inverse kinematics servo control.