• 제목/요약/키워드: Parallel fuzzy systems architecture

검색결과 10건 처리시간 0.03초

Parallel Fuzzy Information Processing System - KAFA : KAist Fuzzy Accelerator -

  • Kim, Young-Dal;Lee, Hyung-Kwang;Park, Kyu-Ho
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.981-984
    • /
    • 1993
  • During the past decade, several specific hardwares for fast fuzzy inference have been developed. Most of them are dedicated to a specific inference method and thus cannot support other inference methods. In this paper, we present a hardware architecture called KAFA(KAist Fuzzy Accelerator) which provides various fuzzy inference methods and fuzzy set operators. The architecture has SIMD structure, which consists of two parts; system control/interface unit(Main Controller) and arithmetic units(FPEs). Using the parallel processing technology, the KAFA has the high performance for fuzzy information processing. The speed of the KAFA holds promise for the development of the new fuzzy application systems.

  • PDF

FUZZY HYPERCUBES: A New Inference Machines

  • Kang, Hoon
    • 한국지능시스템학회논문지
    • /
    • 제2권2호
    • /
    • pp.34-41
    • /
    • 1992
  • A robust and reliable learning and reasoning mechanism is addressed based upon fuzzy set theory and fuzzy associative memories. The mechanism stores a priori an initial knowledge base via approximate learning and utilizes this information for decision-making systems via fuzzy inferencing. We called this fuzzy computer architecture a 'fuzzy hypercube' processing all the rules in one clock period in parallel. Fuzzy hypercubes can be applied to control of a class of complex and highly nonlinear systems which suffer from vagueness uncertainty. Moreover, evidential aspects of a fuzzy hypercube are treated to assess the degree of certainty or reliability together with parameter sensitivity.

  • PDF

Architecture of a PDM VLSI Fuzzy Logic Controller with an Explicit Rule Base

  • Ungering, Ansgar P.;Goser, K.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1386-1389
    • /
    • 1993
  • We are describing the architecture of a fuzzy logic controller using pulse-width-modulation (PDM) technique and a pipeline structure. Features of this controller are: A new architecture for the inference unit, reduced chip area and less I/O-pins. Additionally we present two different rule-bases: one hardwired with reduced chip-area and the other programmable for prototyping. Also an architecture of a parallel minimum-gate is shown.

  • PDF

Parallel Processing of the Fuzzy Fingerprint Vault based on Geometric Hashing

  • Chae, Seung-Hoon;Lim, Sung-Jin;Bae, Sang-Hyun;Chung, Yong-Wha;Pan, Sung-Bum
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권6호
    • /
    • pp.1294-1310
    • /
    • 2010
  • User authentication using fingerprint information provides convenience as well as strong security. However, serious problems may occur if fingerprint information stored for user authentication is used illegally by a different person since it cannot be changed freely as a password due to a limited number of fingers. Recently, research in fuzzy fingerprint vault system has been carried out actively to safely protect fingerprint information in a fingerprint authentication system. In addition, research to solve the fingerprint alignment problem by applying a geometric hashing technique has also been carried out. In this paper, we propose the hardware architecture for a geometric hashing based fuzzy fingerprint vault system that consists of the software module and hardware module. The hardware module performs the matching for the transformed minutiae in the enrollment hash table and verification hash table. On the other hand, the software module is responsible for hardware feature extraction. We also propose the hardware architecture which parallel processing technique is applied for high speed processing. Based on the experimental results, we confirmed that execution time for the proposed hardware architecture was 0.24 second when number of real minutiae was 36 and number of chaff minutiae was 200, whereas that of the software solution was 1.13 second. For the same condition, execution time of the hardware architecture which parallel processing technique was applied was 0.01 second. Note that the proposed hardware architecture can achieve a speed-up of close to 100 times compared to a software based solution.

Knowledge Based Recommender System for Disease Diagnostic and Treatment Using Adaptive Fuzzy-Blocks

  • Navin K.;Mukesh Krishnan M. B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권2호
    • /
    • pp.284-310
    • /
    • 2024
  • Identifying clinical pathways for disease diagnosis and treatment process recommendations are seriously decision-intensive tasks for health care practitioners. It requires them to rely on their expertise and experience to analyze various categories of health parameters from a health record to arrive at a decision in order to provide an accurate diagnosis and treatment recommendations to the end user (patient). Technological adaptation in the area of medical diagnosis using AI is dispensable; using expert systems to assist health care practitioners in decision-making is becoming increasingly popular. Our work architects a novel knowledge-based recommender system model, an expert system that can bring adaptability and transparency in usage, provide in-depth analysis of a patient's medical record, and prescribe diagnostic results and treatment process recommendations to them. The proposed system uses a set of parallel discrete fuzzy rule-based classifier systems, with each of them providing recommended sub-outcomes of discrete medical conditions. A novel knowledge-based combiner unit extracts significant relationships between the sub-outcomes of discrete fuzzy rule-based classifier systems to provide holistic outcomes and solutions for clinical decision support. The work establishes a model to address disease diagnosis and treatment recommendations for primary lung disease issues. In this paper, we provide some samples to demonstrate the usage of the system, and the results from the system show excellent correlation with expert assessments.

A Fuzzy Model Based Controller for the Control of Inverted Pendulum

  • Wook Chang;Kwon, Ok-Kook;Joo, Young-Hoon;Park, Jin-Bae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.459-464
    • /
    • 1998
  • In this paper, we propose a stable fuzzy logic controller architecture for inverted pendulum,. In the design procedure, we represent the fuzzy system as a Takagi-Sugeno fuzzy model and construct a global fuzzy logic controller by considering each local state feedback controller and a supervisory controller, Unlike usual parallel distributed controller, one can design a global stable fuzzy controller without finding a common Lyapunov function by the proposed method. A simulation is performed to control the inverted pendulum to show the effectiveness and feasibility of the proposed fuzzy controller.

  • PDF

퍼지 벡터 양자화를 위한 대규모 병렬 알고리즘 (A Massively Parallel Algorithm for Fuzzy Vector Quantization)

  • ;김철홍;김종면
    • 정보처리학회논문지A
    • /
    • 제16A권6호
    • /
    • pp.411-418
    • /
    • 2009
  • 퍼지 클러스터링 기반 벡터 양자화 알고리즘은 퍼지 클러스터링 분석이 벡터 양자화 프로세스 초기단계에서 초기화에 덜 민감하게 하기 때 문에 데이터 압축 분야에서 널리 사용되어 왔다. 하지만, 퍼지 클러스터링 처리는 훈련 벡터 공간에 포함된 불확실한 양적 공식의 복잡한 프레 임워크 때문에 상당한 계산량이 요구된다. 이러한 상당한 계산량 부하를 극복하기위해 본 논문은 4,096 프로세싱 엘리먼트로 구성된 어레이 아 키텍처를 이용하여 퍼지 벡터 양자화 알고리즘의 병렬 구현을 제안한다. 제안하는 병렬 구현은 4,096 프로세싱 엘리먼트를 이용하여 클러스터 링 프로세스 동안 효과적인 벡터 할당 정책을 적용함으로써 계산적으로 효율적인 솔루션을 제공한다. 모의실험 결과, 제안한 병렬 구현은 기존 의 다른 어레이 아키텍처를 이용한 구현보다 성능 및 효율 측면에서 상당한 향상을 보였다. 또한동일한 130nm 기술에서 제안한 병렬 구현은 오늘날의 ARM이나 TI DSP 프로세서를 이용한 구현과 비교하여 약 1000배의 성능 향상 및 100배의 에너지 효율 향상을 보였다. 이 결과들은 향상된 성능 및 에너지효율에서 제안한 병렬 구현의 잠재가능성을 입증한다.

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF

시스템 출력의 퍼지추론결과를 이용한 제어기의 성능 개선 (Performance Improvement of Controller using Fuzzy Inference Results of System Output)

  • 이우영;최홍문
    • 한국지능시스템학회논문지
    • /
    • 제5권4호
    • /
    • pp.77-86
    • /
    • 1995
  • 퍼지 제어기에 신경회로망을 병렬로 연결시키므로 제어성능 향상을 위해 필요했던 소속함수의 미세조정 과정이 학습으로 대신되게 하는 제어기 구조를 제안하였다. 신경회로망의 학습은 오차 역전파 알고리듬에 의해 수행되고 퍼지 제어기의 출력이 학습에 사용되는 오차량으로 사용된다. 따라서 본 제어기는 전문가의 경험과 지식을 제어기 설계에 이용할 수 있고, 별도의 학습과정 없이 제어과정 중에서 신경회로망 제어기가 학습되어 초기의 제어특성이 개선되어지는 특성이 있다. 그리고 본 구성에서 퍼지 제어기는 사용된 규칙에 의해 형성되는 위상평면상의 슬라이딩 면으로 필요한 제어특성과 신경회로망의 학습기준을 제시하는 한편 신경회로망이 학습되기전 제어 시스템의 제어특성이 안정되도록 하며, 신경회로망은 시스템의 상태궤적이 퍼지제어기에 의해 형성된 슬라이딩 면을 가능한한 근사하게 추종하도록 학습되어져 위상평면상 임의의 위치에 있는 시스템의 상태가 슬라이딩 면을 따라 안정점에 도달하도록 하게한다.

  • PDF

Evolvable Neural Networks Based on Developmental Models for Mobile Robot Navigation

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권3호
    • /
    • pp.176-181
    • /
    • 2007
  • This paper presents evolvable neural networks based on a developmental model for navigation control of autonomous mobile robots in dynamic operating environments. Bio-inspired mechanisms have been applied to autonomous design of artificial neural networks for solving practical problems. The proposed neural network architecture is grown from an initial developmental model by a set of production rules of the L-system that are represented by the DNA coding. The L-system is based on parallel rewriting mechanism motivated by the growth models of plants. DNA coding gives an effective method of expressing general production rules. Experiments show that the evolvable neural network designed by the production rules of the L-system develops into a controller for mobile robot navigation to avoid collisions with the obstacles.