• 제목/요약/키워드: Parallel flow channel

검색결과 133건 처리시간 0.023초

Development of Continuous Monitoring System of Acidic Pollutants for The Studies of Their Diffusion in The Atmosphere (대기오염의 확산 연구를 위한 산성 오염물질의 연속 측정법의 개발)

  • Chung, Hyung-Keun;Dasgupta, Purnendu K.;Lee, Dai Woon
    • Analytical Science and Technology
    • /
    • 제5권3호
    • /
    • pp.269-276
    • /
    • 1992
  • An ion-exchange/conductometric method is applied for the determination of total acidity in simulated atmospheric samples. Non-$H^+$ cations and strong acid anions are enriched by the preconcentrator columns in series and eluted through the corresponding parallel suppressor units. The conductivities from each channel correspond to the concentrations of the resulting ionized species in equivalents per unit volume. The difference is the measure of acidity due to strong acids. With 5-min sampling at a flow rate of 0.3 mL/min, the detection limits for ${NH_4}^+$ and ${SO_4}^{2-}$ are 0.3 and $0.1{\mu}equiv/L$, respectively. The acidity for samples composed of various ions can be determined without significant error, usually less than 5%. The proposed method discriminates against the artifact from the $CO_2$ dissolution. Principles of acidity measurements are also presented.

  • PDF

Mixed Convection Transport from a Module on the Bottom Surface of Three Dimensional Channel (3차원 채널 밑면에 탑재된 모듈로부터의 혼합대류열전달)

  • Lee, Jin-Ho;Park, Sang-Hee;Riu, Kap-Jong;Bang, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제24권5호
    • /
    • pp.632-639
    • /
    • 2000
  • Conjugate heat transfer from a heat generating module ($31{\times}31{\times}7mm^3$) bonded through the module support on the floor of a parallel-plate channel(20mm high, 400mm wide, and 800mm long) to mixed convective air flow(0.2${\sim}$0.9m/s) is studied experimentally. The input power to the module is changed in a range 1.0${\sim}$4.5W, the floor thickness 0.2${\sim}$5mm, and the thermal resistance of module support, Rc:=0.06, 1.03 and 82.0K/W. Thermal conductance(Uc) of the board and convective thermal conductance($U_A$) from the module were derived, and the effect of V; Rc and t on Uc was investigated. It is found that the conjugate conductance (Uc) and the conductive heat transfer ratio ($Q_B$/Q) depend on the thermal resistance of the module support, the air velocity and the board thickness. The change of the module support resistance and the board thickness helps to elucidate the relative significance of heat transfer paths through the module support, the board, and from the board surface to the air. Additional information is investigated about the dependence of the heat transfer rate on the mixed convection parameter.

Architecture and Depositional Style of Gravelly, Deep-Sea Channels: Lago Sofia Conglomerate, Southeyn Chile (칠레 남부 라고 소피아 (Lago Sofla) 심해저 하도 역암의 층구조와 퇴적 스타일)

  • Choe Moon Young;Jo Hyung Rae;Sohn Young Kwan;Kim Yeadong
    • The Korean Journal of Petroleum Geology
    • /
    • 제10권1_2호
    • /
    • pp.23-33
    • /
    • 2004
  • The Lago Sofia conglomerate in southern Chile is a lenticular unit encased within mudstone-dominated, deep-sea successions (Cerro Toro Formation, upper Cretaceous), extending from north to south for more than $120{\cal}km$. The Lago Sofia conglomerate is a unique example of long, gravelly deep-sea channels, which are rare in the modern environments. In the northern part (areas of Lago Pehoe and Laguna Goic), the conglomerate unit consists of 3-5 conglomerate bodies intervened by mudstone sequences. Paleocurrent data from these bodies indicate sediment transport to the east, south, and southeart. The conglomerate bodies in the northern Part are interpreted as the tributary channels that drained down the Paleoslope and converged to form N-S-trending trunk channels. In the southern part (Lago Sofia section), the conglomerate unit comprises a thick (> 300 m) conglomerate body, which probably formed in axial trunk channels of the N-5-trending foredeep trough. The well-exposed Lago Sofia section allowed for detailed investigation of sedimentary facies and large-scale architecture of the deepsea channel conglomerate. The conglomerate in Lago Sofia section comprises stratified conglomerate, massive-to-graded conglomerate, and diamictite, which represent bedload deposition under turbidity currents, deposition by high-density turbidity currents, and muddy debris flows, respectively. Paleocurrent data suggest that the debris flows originated from the failure of nearby channel banks or slopes flanking the channel system, whereas the turbidity currents flowed parallel to the orientation of the overall channel system. Architectural elements produced by turbidity currents represent vertical stacking of gravel sheets, lateral accretion of gravel bars, migration of gravel dunes, and filling of channel thalwegs and scoured hollows, similar to those in terrestrial gravel-bed braided rivers. Observations of large-scale stratal pattern reveal that the channel bodies are offset stacked toward the east, suggestive of an eastward migration of the axial trunk channel. The eastward channel migration is probably due to tectonic tilting related to the uplift of the Andean protocordillera just west of the Lago Sofia deep-sea channel system.

  • PDF

Experimental Study on Pressure Loss of Flow Parallel to Rod Bundle with Spacer Grid (지지격자가 있는 봉다발과 축방향으로 평행한 유동의 압력손실에 관한 실험적 연구)

  • Lee, Chi-Young;Shin, Chang-Hwan;Park, Ju-Yong;In, Wang-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제36권7호
    • /
    • pp.689-695
    • /
    • 2012
  • The friction factor in a rod bundle and the loss coefficient at a spacer grid were examined. As a test section, 25 smooth rods, 9.5 mm in diameter and 2000 mm in length, were prepared and installed in a $5{\times}5$ square array in a square channel. In this case, the P/D (Pitch-to-Diameter ratio) was 1.35. In this work, plain (i.e., no mixing vanes), split-vane, and hybrid-vane spacer grids were tested. In a bare rod bundle (i.e., no spacer grid), the measured friction factors were in good agreement with the previous correlations. Among the spacer grids tested, the hybrid-vane spacer grid presented the largest friction factor in the rod bundle and loss coefficient. This may be because of the flow pattern change induced by large relative plugging of the flow cross section and mixing vane geometry. At Re=$5{\times}10^5$, the predicted loss coefficients of plain, splitvane, and hybrid-vane spacer grids were approximately 0.79, 0.80, and 0.88, respectively.

Interpretation of Migration of Radionuclides in a Rock Fracture Using a Particle Tracking Method (입자추적법을 사용한 암반균열에서 핵종이동 해석)

  • Chung Kyun Park;Pil Soo Hahn;Douglas J. Drew
    • Nuclear Engineering and Technology
    • /
    • 제27권2호
    • /
    • pp.176-188
    • /
    • 1995
  • A particle tracking scheme was developed in order to model radionuclide transport through a tortuous flow Held in a rock fracture. The particle tacking method may be used effectively in a heterogeneous flow field such as rock fracture. The parallel plate representation of the single fracture fails to recognize the spatial heterogeneity in the fracture aperture and thus seems inadequate in describing fluid movement through a real fracture. The heterogeneous flow field une modeled by a variable aperture channel model after characterizing aperture distribution by a hydraulic test. To support the validation of radionuclide transport models, a radionuclide migration experiment was performed in a natural fracture of granite. $^3$$H_2O$ and $^{131}$ I are used as tracers. Simulated results were in agreement with experimental result and therefore support the validity of the transport model. Residence time distributions display multipeak curves caused by the fast arrival of solutes traveling along preferential fracture channels and by the much slower arrival of solutes following tortous routes through the fracture. Results from the modelling of the transport of nonsorbing tracer through the fracture show that diffusion into the interconnected pore space in the rock mass has a significant effect on retardation.

  • PDF

A Study on the Plane Turbulent Offset Jet (평면 난류 오프셋 제트에 관한 연구)

  • 유정열;강신형;채승기;좌성훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제10권3호
    • /
    • pp.357-366
    • /
    • 1986
  • The flow characteristics of two-dimensional turbulent offset jet which is discharged parallel to a solid wall has been studied experimentally and numerically. In the experiment, 3-hole pitot tube and 2 channel constant temperature hot-wire anemometer are used to measure local mean velocity, turbulence intensity and Reynolds stress while scannivalve is used to measure the wall pressure distribution. It is confirmed experimentally that local mean velocity is closely related to wall pressure distribution. It is also verified that for large Reynolds numbers and fixed step height there exists a similarity in the distribution of wall pressure coefficient. The maximum values of turbulence intensity occur in the top and bottom mixing layers and the magnitude of Reynolds stress becomes large in the lower mixing layer than in the top mixing layer due to the effect of streamline curvature and entrainment. In the numerical analysis, standard k-.epsilon. model based on eddy viscosity model and Leschziner and Rodi model based on algebraic stress model are adopted. The numerical analyses predict shorter reattachment lengths than the experiment, and this difference is judged to be due mainly to the problem of turbulence model constants and numerical algorithm. This also causes the inconsistency between the two results for other turbulence quantities in the recirculation region and impingement region, which constitutes a subject of a continued future study.

Potential of gas generation and/or natural gas hydrate formation, and evidences of their presence in near seafloor sediments of the southwestern Ulleung Basin, East Sea (동해 울릉분지 남서부 천부 퇴적층에서의 가스 생성 및 천연가스 하이드레이트 형성 잠재력과 이들의 부존 증거)

  • Ryu, Byong-Jae;Lee, Young-Joo;Kim, Ji-Hoon;Riedel, M.;Hyndman, R.D.;Kim, Il-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.50-53
    • /
    • 2006
  • Regional geophysical surveys and geological cal studies on natural gas hydrate (NGH) in the East Sea were carried out by the Korea Institute of Geoscience and Mineral Resources (KIGAM) from 2000 to 2004. 16 piston cores, 2270 L-km of multi-channel reflection seismic (MCRS) data and 730 L-km of 3.5kHz Chirp data obtained from the southwestern part of the deep-water Ulleung Basin were analyzed in this study. In piston cores, cracks generally developed parallel to bedding suggest significant gas content. The core analyses showed high total organic carbon (TOC) content, sedimentation rate and heat flow of sediments. These are in favor of the general ion of substantial biogenic methane, which can form the NGH within the stability zone of the near seafloor sediments in the study area. The cores generally show also high residual hydrocarbon gas concentrations for the formation of natural gas hydrates The geophysical indicators of the presence of gas and/or NGH such as bottom simulating reflectors (BSRs), seismic blank Bones, pockmarks and gas seeping features were well defined on the MCRS and Chirp data.

  • PDF

Design of A scale-down experimental model for SFR reactor vault cooling system performance analyses

  • Kim, Koung Moon;Hwang, Ji-Hwan;Wongwises, Somchai;Jerng, Dong-Wook;Ahn, Ho Seon
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1611-1625
    • /
    • 2020
  • We propose a scaled-down experimental model of vertical air-natural convection channels by applying the modified Ishii-Kataoka scaling method with the assistance of numerical analyses to the Reactor Vault Cooling System (RVCS) of the Proto-type Gen-IV Sodium-cooled fast reactor (PGSFR) being developed in Korea. Two major non-dimensional numbers (modified Richardson and Friction number) from the momentum equation and Stanton number from the energy balance equation were identified to design the scaled-down experimental model to assimilate thermal-hydraulic behaviors of the natural convective air-cooling channel of RVCS. The ratios of the design parameters in the PGSFR RVCS between the prototype and the scaled-down model were determined by setting Richardson and Stanton number to be unity. The friction number which cannot be determined by the Ishii-Kataoka method was estimated by numerical analyses using the MARS-KS system code. The numerical analyses showed that the friction number with the form loss coefficient of 2.0 in the scale-down model would result in an acceptable prediction of the thermal-hydraulic behavior in RVCS. We also performed experimental benchmarking using the scaled-down model with the MARS-KS simulations to verify the appropriateness of the scale-down model, which demonstrated that the temperature rises and the average air flow velocity measured in the scale-down model.

Fluid-mud deposits in the Early Cretaceous McMurray Formation, Alberta, Canada (캐나다 앨버타주 전기 백악기 맥머레이층의 유성이토 퇴적층)

  • Oh, Juhyeon;Jo, Hyung Rae
    • Journal of the Geological Society of Korea
    • /
    • 제54권5호
    • /
    • pp.477-488
    • /
    • 2018
  • Fluid muds commonly occur in estuarine environments, but their ancient examples have rarely been studied in terms of depositional characteristics and processes. Cores of estuarine channel deposits of the Early Cretaceous McMurray Formation, Alberta, Canada show various mudstone layers that possess depositional characteristics of high clay-concentration flows. These mudstone layers are examined in detail through microscopic observation of thin sections and classified into three microfacies (<1 to 25 mm thick) on the basis of sedimentary texture and structures. Structureless mudstone (Microfacies 1) consists mainly of clay particles and contains randomly dispersed coarser grains (coarse silt to fine sand). This microfacies is interpreted as being deposited by cohesive mud flows, i.e., fluid muds, which possessed sufficient strength to support suspended coarser grains (quasi-laminar plug flow). Silt-streaked mudstone (Microfacies 2) mainly comprises mudstone with dispersed coarse grains and includes very thin, discontinuous silt streaks of coarse-silt to very-fine-sand grains. The texture similar to Microfacies 1 indicates that Microfacies 2 was also deposited by cohesive fluid muds. The silt streaks are, however, suggestive of the presence of intermittent weak turbulence under the plug (upper transitional plug flow). Heterolithic laminated mudstone (Microfacies 3) is characterized by alternation of relatively thick silt laminae and much thinner clay laminae. It is either parallel-laminated or low-angle cross-laminated, occasionally showing low-amplitude ripple forms. The heterolithic laminae are interpreted as the results of shear sorting in the basal turbulent zone under a cohesive plug. They may represent low-amplitude bed-waves formed under lower transitional plug flows. These three microfacies reflect a range of flow phases of fluid muds, which change with flow velocities and suspended mud concentrations. The results of this study provide important knowledge to recognize fluid-mud deposits in ancient sequences and to better understand depositional processes of mudstones.

A Study on the Comparison and Analysis of Debris Reduction System on Small Bridge (소교량 유송잡물 저감시설의 비교 분석 연구)

  • Kim, Sung-Joong;Jung, Do-Joon;Kang, Joon-Gu;Yeo, Hong-Koo;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제17권3호
    • /
    • pp.31-41
    • /
    • 2016
  • Damage to structures, such as bridge piers, are increasing rapidly due to the debris moving along rivers at the time of flooding. Therefore, the debris fin, debris deflector and debris sweeper, which are debris reduction systems, were produced in this study and an accumulation experiment was carried out on the experimental channel according to the existence of the reduction system. The debris fin is the reduction system that creates parallel flow on debris accumulated on the bridge to pass through the bridge, which was produced using wood. In addition, the debris deflector was produced using steel pipes and it has the type of detouring the direction of debris. The debris sweeper passes the debris using the magnetic force rotation of a screw-shaped cylindrical structure by water flow and it was produced using acrylic material. The experiment was carried out by analyzing the level of accumulation according to the hardness and dropping method of the debris and comparing the accumulation rate of reduction systems, and the experiment was carried out 5 times. According to the experimental results, there was a difference in the accumulation rate according to the type of reduction system and the shape of debris, and it often depended significantly on the initial shape of debris accumulation. The direct debris reduction effect on the bridge was higher in the order of the debris deflector, debris sweeper and debris fin, but in case of the debris deflector, damage, such as stream turbulence, changes in water level and river bed, and the loss of deflector can occur due to debris accumulated directly on the debris deflector. Therefore, it is necessary to design the debris deflector considering these issues.