• Title/Summary/Keyword: Parallel connected dual converter

Search Result 9, Processing Time 0.023 seconds

Predictive Current Control of 12-Pulse Parallel Connected Dual Converter System (12펄스 병렬 연결 듀얼 컨버터 시스템의 예측전류제어)

  • 이창원;송인호;최창호
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.405-408
    • /
    • 1998
  • In this paper, a predictive current control of 12-pulse parallel connected dual converter system with interphase transfromer(IPT) is presented. Firstly, 12-pulse parallel connected dual converter system and the predictive current control of this system is discussed. And the validity of the presented system and the excellence of the predictive current control response is proved through the simyulation and experiment result.

  • PDF

Operation Analysis and New Current Control of Parallel Connected Dual Converter System without Interphase Reactors (상간리액터 없는 병렬연결 듀얼컨버터 시스템의 동작해석과 새로운 전류제어)

  • Ji, Jun-Geun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.7
    • /
    • pp.488-493
    • /
    • 2000
  • In this paper, a predictive current control of 12-pulse parallel connected dual converter system without interphase reactors(IPR) is presented. Firstly, the characteristics of system without IPR are analyzed and compared with that of system with IPR. And the predictive current control of this system is discussed. Finally the validity of the presented system and the excellence of the predictive current control response is proved through the simulation results and experimental results.

  • PDF

A Study on Three Parallel Operation Control Algorithm of Thyristor Dual Converter System for Urban Railway Substation (도시 철도용 사이리스터 듀얼 컨버터 시스템의 3병렬 운전 제어 기법에 관한 연구)

  • Kim, Sung-An;Han, Sung-Woo;Cho, Yun-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.459-467
    • /
    • 2017
  • An urban railway power substation consists of three thyristor dual converters. Two converters are connected to up and down trolley line to supply the electric energy or feed the regenerative energy back to the distribution. When the two converters break down, the remaining converter is used in an emergency. One thyristor dual converter system (TDCS) manages the energy of two or three railway stations. If the TDCS fails, the trains stop operating. To solve the problem, this paper proposes the three parallel operation control algorithm of thyristor dual converter system using the emergency converter. The broken TDCS can be replaced by the emergency converter in other TDCS. The effectiveness of this proposed control is verified by simulation.

Predictive Current Control of 12-Pulse Parallel Connected Dual Converter System without Interphase Reactors (상간 리액터를 제거한 12상 병렬 연결 듀얼 컨버터 시스템의 예측전류제어)

  • Park, Ki-Tae;Ji, Jun-Keun;Sul, Seung-Ki;Choi, Chang-Ho;Shin, Hyun-Seok;Lee, Chang-Won;Chang, Kye-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.482-485
    • /
    • 1996
  • In this paper, a predictive current control of 12-pulse parallel connected dual converter system without interphase reactors(IPR) is presented. Firstly, the characteristics of system without IPR are analyzed and compared with that of system with IPR. And the predictive current control of this system is discussed. Finally the validity of the presented system and the excellence of the predictive current control response is proved through the simulation results.

  • PDF

A Study on the Compensation Method for Unbalance Parallel Operation of Parallel Connected Thyristor Dual Converters using Circulating Current (순환 전류를 이용한 병렬 연결된 사이리스터 듀얼 컨버터의 불균형 병렬 운전 보상 기법에 관한 연구)

  • Kim, Sung-An;Han, Sung-Woo;Moon, Dong-Ok;Kim, Young-Woo;Lee, Chang-Hee;Cho, Yun-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.473-480
    • /
    • 2016
  • This study proposes a performance improvement for parallel-connected thyristor dual converters using a circulating current with an unbalanced parallel operation compensator. The proposed control method determines a variable reference value for the voltage PI controller according to voltage error at firing angle control applied to a difference current control. This method uses circulating current control to maintain a stable voltage and excellent current response during parallel operation. The effectiveness of the proposed control is verified with a simulation and an experiment based on the comparison of the performance of the proposed control method with other conventional methods.

Half Load-Cycle Worked Dual SEPIC Single-Stage Inverter

  • Chen, Rong;Zhang, Jia-Sheng;Liu, Wei;Zheng, Chang-Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.143-149
    • /
    • 2016
  • The two-stage converter is widely used in traditional DC/AC inverter. It has several disadvantages such as complex topology, large volume and high loss. In order to overcome these shortcomings, a novel half load-cycle worked dual SEPIC single-stage inverter, which is based on the analysis of the relationship between input and output voltages of SEPIC converters operating in the discontinuous conduction mode (DCM), is presented in this paper. The traditional single-stage inverter has remarkable advantages in small and medium power applications, but it can’t realize boost DC/AC output directly. Besides one pre-boost DC/DC converter is needed between the DC source and the traditional single-stage inverter. A novel DC/AC inverter without pre-boost DC/DC converter, which is comprised of two SEPIC converters, is studied. The output of dual SEPIC converters is connected with anti-parallel and half load-cycle control is used to realize boost and buck DC/AC output directly and work properly, whatever the DC input voltage is higher or lower than the AC output voltage. The working principle, parameter selection and the control strategy of the inverters are analyzed in this paper. Simulation and experiment results verify the feasibility of the new inverter.

A Study on the Dual PWM Digital Excitation System of Regeneration Type (회생형 이중화 PWM 방식의 디지털 여자시스템에 관한 연구)

  • Ryu, Ho-Seon;Lee, Joo-Hyun;Lim, Ick-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.79-84
    • /
    • 2010
  • This paper discusses the control of generator field using dual IGBT PWM regeneration method to target brushless synchronous generator. If one of PWM bridges happens to fault, it transfers automatically and can be in charge of full load. Also it has an advantage of the operation which UPS connected in parallel with PWM bridge can supply power to excitation system in condition of main power loss. This PWM system supplies field current to generator in one quadrature operation, regenerates field coil energy to main power supplier in four quadrature operation. We designed, manufactured and applied the first trial product at J-power plant.

A Study of the Three Port NPC based DAB Converter for the Bipolar DC Grid (양극성 직류 배전망에 적용 가능한 3포트 NPC 기반의 DAB 컨버터에 대한 연구)

  • Yun, Hyeok-Jin;Kim, Myoungho;Baek, Ju-Won;Kim, Ju-Yong;Kim, Hee-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.336-344
    • /
    • 2017
  • This paper presents the three-port DC-DC converter modeling and controller design procedure, which is part of the solid-state transformer (SST) to interface medium voltage AC grid to bipolar DC distribution network. Due to the high primary side DC link voltage, the proposed converter employs the three-level neutral point clamped (NPC) topology at the primary side and 2-two level half bridge circuits for each DC distribution network. For the proposed converter particular structure, this paper conducts modeling the three winding transformer and the power transfer between each port. A decoupling method is adopted to simplify the power transfer model. The voltage controller design procedure is presented. In addition, the output current sharing controller is employed for current balancing between the parallel-connected secondary output ports. The proposed circuit and controller performance are verified by experimental results using a 30 kW prototype SST system.

Voltage-Mode 1.5 Gbps Interface Circuits for Chip-to-Chip Communication

  • Lee, Kwang-Jin;Kim, Tae-Hyoung;Cho, Uk-Rae;Byun, Hyun-Geun;Kim, Su-Ki
    • ETRI Journal
    • /
    • v.27 no.1
    • /
    • pp.81-88
    • /
    • 2005
  • In this paper, interface circuits that are suitable for point-to-point interconnection with an over 1 Gbps data rate per pin are proposed. To achieve a successful data transfer rate of multi-gigabits per-second between two chips with a point-to-point interconnection, the input receiver uses an on-chip parallel terminator of the pass gate style, while the output driver uses the pullup and pulldown transistors of the diode-connected style. In addition, the novel dynamic voltage level converter (DVLC) has solved such problems as the access time increase and valid data window reduction. These schemes were adopted on a 64 Mb DDR SRAM with a 1.5 Gbps data rate per pin and fabricated using a 0.10 ${\mu}m$ dual gate oxide CMOS technology.

  • PDF