• Title/Summary/Keyword: Parallel computation

Search Result 592, Processing Time 0.027 seconds

Characteristics of the Resonance and Impedance of Parallel Plates due to the Embedded Metamaterial Substrate (Metamaterial 기판에 의한 평행평판 공진 및 임피던스 특성)

  • Kahng, Sung-Tek
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.41-46
    • /
    • 2008
  • This paper conducts the research on the variation in the characteristics of the resonance and impedance of the metallic parallel plates due to the replacement of the normal dielectric substrate by the metamaterial. The ENG(${\epsilon}<0$), MNG(${\mu}<0}$) and DNG(${\epsilon},{\mu}<0$) types of metamaterial as well as the DPS(Double Positive) material are taken into consideration a full-wave modal analysis method known for accurate computation, as the SRR-kind of Lorentz model for permittivity and metal wire-periodic array-kind of Drude model for permeability, and the behaviors of parallel plates' resonance mode and impedance are observed. Based upon the observation, the design guidelines for the substrate can be addressed regrading how to suppress the parallel plates' spurious resonance modes that degrade the quality of the electronic equipment.

Multicore Processor based Parallel SVM for Video Surveillance System (비디오 감시 시스템을 위한 멀티코어 프로세서 기반의 병렬 SVM)

  • Kim, Hee-Gon;Lee, Sung-Ju;Chung, Yong-Wha;Park, Dai-Hee;Lee, Han-Sung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.161-169
    • /
    • 2011
  • Recent intelligent video surveillance system asks for development of more advanced technology for analysis and recognition of video data. Especially, machine learning algorithm such as Support Vector Machine (SVM) is used in order to recognize objects in video. Because SVM training demands massive amount of computation, parallel processing technique is necessary to reduce the execution time effectively. In this paper, we propose a parallel processing method of SVM training with a multi-core processor. The results of parallel SVM on a 4-core processor show that our proposed method can reduce the execution time of the sequential training by a factor of 2.5.

EFFICIENT COMPUTATION OF COMPRESSIBLE FLOW BY HIGHER-ORDER METHOD ACCELERATED USING GPU (고차 정확도 수치기법의 GPU 계산을 통한 효율적인 압축성 유동 해석)

  • Chang, T.K.;Park, J.S.;Kim, C.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.52-61
    • /
    • 2014
  • The present paper deals with the efficient computation of higher-order CFD methods for compressible flow using graphics processing units (GPU). The higher-order CFD methods, such as discontinuous Galerkin (DG) methods and correction procedure via reconstruction (CPR) methods, can realize arbitrary higher-order accuracy with compact stencil on unstructured mesh. However, they require much more computational costs compared to the widely used finite volume methods (FVM). Graphics processing unit, consisting of hundreds or thousands small cores, is apt to massive parallel computations of compressible flow based on the higher-order CFD methods and can reduce computational time greatly. Higher-order multi-dimensional limiting process (MLP) is applied for the robust control of numerical oscillations around shock discontinuity and implemented efficiently on GPU. The program is written and optimized in CUDA library offered from NVIDIA. The whole algorithms are implemented to guarantee accurate and efficient computations for parallel programming on shared-memory model of GPU. The extensive numerical experiments validates that the GPU successfully accelerates computing compressible flow using higher-order method.

Analytical fragility curves of a structure subject to tsunami waves using smooth particle hydrodynamics

  • Sihombing, Fritz;Torbol, Marco
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1145-1167
    • /
    • 2016
  • This study presents a new method to computes analytical fragility curves of a structure subject to tsunami waves. The method uses dynamic analysis at each stage of the computation. First, the smooth particle hydrodynamics (SPH) model simulates the propagation of the tsunami waves from shallow water to their impact on the target structure. The advantage of SPH over mesh based methods is its capability to model wave surface interaction when large deformations are involved, such as the impact of water on a structure. Although SPH is computationally more expensive than mesh based method, nowadays the advent of parallel computing on general purpose graphic processing unit overcome this limitation. Then, the impact force is applied to a finite element model of the structure and its dynamic non-linear response is computed. When a data-set of tsunami waves is used analytical fragility curves can be computed. This study proves it is possible to obtain the response of a structure to a tsunami wave using state of the art dynamic models in every stage of the computation at an affordable cost.

Moving-Target Tracking System Using Neural Networks (신경회로망을 이용한 이동 표적 추적 시스템)

  • 이진호;윤상로;이승현;허선종;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.11
    • /
    • pp.1201-1209
    • /
    • 1991
  • Generally, the conventional tracking algorithms are very limited in the practical applications because of its exponential increase in the required computation time for the number of targets being tracked. Therefore, in this paper, a new real-time moving target tracking system is proposed, which is based on the neural networks with massive parallel processing capabilities. Through the theoretical and experimental results, the target tracking system based on neural network algorithm is analyzed to be computationally independent of the number of objects being tracked and performs the optimized tracking through its massive parallel computation and learning capabilities. And this system also has massive matched filtering effects because the moving target data can be compactly stored in the interconnection weights by learning. Accordingly, a possibility of the proposed neural network target tracking system can be suggested to the fields of real-time application.

  • PDF

Parallel Computation of FDTD algorithm using CUDA (CUDA를 이용한 FDTD 알고리즘의 병렬처리)

  • Lee, Ho-Young;Park, Jong-Hyun;Kim, Jun-Seong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.4
    • /
    • pp.82-87
    • /
    • 2010
  • Modern GPUs(Graphic Processing Units) provide computing capability higher than that of the general CPUs(Central Processor Units). With supports of programmability of graphics pipeline GP-GPU(General Purpose computation on GPU) has gained much attention expanding its application area. This paper compares sequential and massively parallel implementations of FDTD(Finite Difference Time Domain) algorithm using CUDA(Compute Unified Device Architecture). Experimental results show upto 45X speedup over conventional CPU execution.

NUMERICAL METHOD FOR SINGULARLY PERTURBED THIRD ORDER ORDINARY DIFFERENTIAL EQUATIONS OF REACTION-DIFFUSION TYPE

  • ROJA, J. CHRISTY;TAMILSELVAN, A.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.277-302
    • /
    • 2017
  • In this paper, we have proposed a numerical method for Singularly Perturbed Boundary Value Problems (SPBVPs) of reaction-diffusion type of third order Ordinary Differential Equations (ODEs). The SPBVP is reduced into a weakly coupled system of one first order and one second order ODEs, one without the parameter and the other with the parameter ${\varepsilon}$ multiplying the highest derivative subject to suitable initial and boundary conditions, respectively. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference scheme. The weakly coupled system is decoupled by replacing one of the unknowns by its zero-order asymptotic expansion. Finally the present numerical method is applied to the decoupled system. In order to get a numerical solution for the derivative of the solution, the domain is divided into three regions namely two inner regions and one outer region. The Shooting method is applied to two inner regions whereas for the outer region, standard finite difference (FD) scheme is applied. Necessary error estimates are derived for the method. Computational efficiency and accuracy are verified through numerical examples. The method is easy to implement and suitable for parallel computing. The main advantage of this method is that due to decoupling the system, the computation time is very much reduced.

Design and Implementation of Big Data Platform for Image Processing in Agriculture (농업 이미지 처리를 위한 빅테이터 플랫폼 설계 및 구현)

  • Nguyen, Van-Quyet;Nguyen, Sinh Ngoc;Vu, Duc Tiep;Kim, Kyungbaek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.50-53
    • /
    • 2016
  • Image processing techniques play an increasingly important role in many aspects of our daily life. For example, it has been shown to improve agricultural productivity in a number of ways such as plant pest detecting or fruit grading. However, massive quantities of images generated in real-time through multi-devices such as remote sensors during monitoring plant growth lead to the challenges of big data. Meanwhile, most current image processing systems are designed for small-scale and local computation, and they do not scale well to handle big data problems with their large requirements for computational resources and storage. In this paper, we have proposed an IPABigData (Image Processing Algorithm BigData) platform which provides algorithms to support large-scale image processing in agriculture based on Hadoop framework. Hadoop provides a parallel computation model MapReduce and Hadoop distributed file system (HDFS) module. It can also handle parallel pipelines, which are frequently used in image processing. In our experiment, we show that our platform outperforms traditional system in a scenario of image segmentation.

AI Processor Technology Trends (인공지능 프로세서 기술 동향)

  • Kwon, Youngsu
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.5
    • /
    • pp.121-134
    • /
    • 2018
  • The Von Neumann based architecture of the modern computer has dominated the computing industry for the past 50 years, sparking the digital revolution and propelling us into today's information age. Recent research focus and market trends have shown significant effort toward the advancement and application of artificial intelligence technologies. Although artificial intelligence has been studied for decades since the Turing machine was first introduced, the field has recently emerged into the spotlight thanks to remarkable milestones such as AlexNet-CNN and Alpha-Go, whose neural-network based deep learning methods have achieved a ground-breaking performance superior to existing recognition, classification, and decision algorithms. Unprecedented results in a wide variety of applications (drones, autonomous driving, robots, stock markets, computer vision, voice, and so on) have signaled the beginning of a golden age for artificial intelligence after 40 years of relative dormancy. Algorithmic research continues to progress at a breath-taking pace as evidenced by the rate of new neural networks being announced. However, traditional Von Neumann based architectures have proven to be inadequate in terms of computation power, and inherently inefficient in their processing of vastly parallel computations, which is a characteristic of deep neural networks. Consequently, global conglomerates such as Intel, Huawei, and Google, as well as large domestic corporations and fabless companies are developing dedicated semiconductor chips customized for artificial intelligence computations. The AI Processor Research Laboratory at ETRI is focusing on the research and development of super low-power AI processor chips. In this article, we present the current trends in computation platform, parallel processing, AI processor, and super-threaded AI processor research being conducted at ETRI.

Real-Time Object Segmentation in Image Sequences (연속 영상 기반 실시간 객체 분할)

  • Kang, Eui-Seon;Yoo, Seung-Hun
    • The KIPS Transactions:PartB
    • /
    • v.18B no.4
    • /
    • pp.173-180
    • /
    • 2011
  • This paper shows an approach for real-time object segmentation on GPU (Graphics Processing Unit) using CUDA (Compute Unified Device Architecture). Recently, many applications that is monitoring system, motion analysis, object tracking or etc require real-time processing. It is not suitable for object segmentation to procedure real-time in CPU. NVIDIA provide CUDA platform for Parallel Processing for General Computation to upgrade limit of Hardware Graphic. In this paper, we use adaptive Gaussian Mixture Background Modeling in the step of object extraction and CCL(Connected Component Labeling) for classification. The speed of GPU and CPU is compared and evaluated with implementation in Core2 Quad processor with 2.4GHz.The GPU version achieved a speedup of 3x-4x over the CPU version.