• Title/Summary/Keyword: Parallel channel

Search Result 511, Processing Time 0.026 seconds

A Study on the Difference Method of Magnetic Resonance Signal Measurement when Using Multi-channel Coil and Parallel Imaging

  • Choi, Kwan-Woo;Lee, Ho-Beom;Son, Soon-Yong;Jeong, Mi-Ae
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.220-226
    • /
    • 2017
  • SNR (signal to ratio) is a criterion for providing objective information for evaluating the performance of a magnetic resonance imaging device, and is an important measurement standard for evaluating the quality of MR (Magnetic Resonance) image. The purpose of our study is to evaluate the correct SNR measurement for multi-channel coil and parallel imaging. As a result of research, we found that both T1 and T2 weighted images show the narrowest confidence interval of the method recommended by NEMA (The National Electrical manufacturers Association) 1 having a single measurement method, whereas the ACR (American College of Radiology) measurement method using a multi-channel coil and a parallel imaging technique shows the widest confidence interval. There is a significance in that we quantitatively verified the inaccurate problems of a signal to noise ratio using a ACR measurement method when using a multi-channel coil and a parallel imaging technique of which method does not satisfy the preconditions that researchers could overlook.

A New Traffic Model for Internet Load Estimation (트래픽별 특성 규명을 통한 인터넷 부하 측정에 관한 연구)

  • Kim, Hu-Gon
    • Korean Management Science Review
    • /
    • v.26 no.1
    • /
    • pp.161-169
    • /
    • 2009
  • A traffic analysis on the Internet has an advantage for obtaining the characteristics of transferred packets. There were many studies to understand the characteristics of the Internet traffic with mathematical statistical approach. The approach of this study is different from previous studies. We first introduced a virtual network concept to present the Internet as a simplified mathematical model. It also represents each traffic flowing on the Internet as a parallel Gaussian channel on the virtual network. We suggest the optimal capacity of each parallel Gaussian channel using some related studies on the Gaussian channel model.

Real-time 256-channel 12-bit 1ks/s Hardware for MCG Signal Acquisition (심자도 신호획득을 위한 실시간 256-채널 12-bit 1ks/s 하드웨어)

  • Yoo, Jae-Tack
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.11
    • /
    • pp.643-649
    • /
    • 2005
  • A heart diagnosis system adopts Superconducting Quantum Interface Device(SQUD) sensors for precise MCG(MagnetoCardioGram) signal acquisitions. Such system needs to deal with hundreds of sensors, requiring fast signal sampling md precise analog-to-digital conversions(ADC). Our development of hardware board, processing 64-channel 12-bit in 1 ks/s speed, is built by using 8-channel ADC chips, 8-bit microprocessors, SPI interfaces, and specially designed parallel data transfers between microprocessors to meet the 1ks/s, i.e. 1 mili-second sampling interval. We extend the design into 256-channel hardware and analyze the speed .using the measured data from the 64-channel hardware. Since our design exploits full parallel processing, Assembly level coding, and NOP(No Operation) instruction for timing control, the design provides expandability and lowest system timing margin. Our result concludes that the data collection with 256-channel analog input signals can be done in 201.5us time-interval which is much shorter than the required 1 mili-second period.

Cooling Characteristics of a Parallel Channel with Protruding Heat Sources Using Convection and Conduction Heat Transfer (돌출된 열원이 있는 채널에서 대류와 전도열전달을 이용한 냉각특성)

  • 손영석;신지영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.923-930
    • /
    • 2002
  • Cooling characteristics of a parallel channel with protruding heat sources using convection and conduction heat transfer are studied numerically. A two-dimensional model has been developed for numerical prediction of transient, compressible, viscous, laminar flow, and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve the problem. The assembly consists of two channels formed by two covers and one printed circuit board which has three uniform heat source blocks. Six different cooling methods are considered to find out the most efficient cooling method in a given geometry and heat sources. The velocity and temperature fields of cooling medium, the temperature distribution along the block surface, and the maximum temperature in each block are obtained. The results are compared to examine the cooling characteristics of the different cooling methods.

Effects of the Inclined Angles of Channel on Thermal Stability of Electronic Components (채널의 경사각이 전자부품의 열적 안정성에 미치는 영향)

  • 추홍록;상희선;유재환
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.36-42
    • /
    • 2000
  • An experimental study was carried out to investigate the effects of inclined angles of channel on thermal stability of electronic components. In this study, it is focused on the natural convection heat transfer from an inclined parallel channel with discrete protruding heat sources. The material used for the inclined parallel channel was epoxy-resin, while air as the cooling fluid. Heat transfer phenomena for inclined angles of $\psi$=$15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$ and for the range of $9.52{\times}10^5/ were analyzed. The thermal fields in the channel were visualized by Mach-Zehnder interferometer. Also, local temperatures were measured by thermocouples along the channel wall and heat sources surface. As a result, for the range of $4.29{\times} 10^5/, a useful correlation of mean Nusselt number was proposed as a function of modified channel Rayleigh number.

  • PDF

A Study on Validation of Variable Aperture Channel Model: Migration Experiments of Conservative Tracer in Parallel and Wedge-Shaped Fracture

  • Keum, D.K.;Hahn, P.S.;Vandergraaf, T.T.
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.245-261
    • /
    • 1998
  • In order to validate the variable aperture channel model that can deal with the non-uniform How rate in flow domain, migration experiments of conservative tracer were performed in two artificial fractures, a parallel and a wedge-shaped fracture. These different fracture shapes were designed to give different flow pattern. The fractures were made from a transparent acrylic plastic plate and a granite slab with dimensions of 10 $\times$ 61 $\times$ 61 cm. Uranine (Fluorescein sodium salt) was used as a conservative tracer. The volumetric flow rates of uranine feed solution were 30 mL/ hr, giving a mean residence time in the fracture of approximately 24 hours for the parallel fracture and 34 hours for the wedge-shaped fracture. The migration plumes of uranine were photographed to obtain profiles in space and time for movement of a tracer in fractures. The photographed migration plume was greatly affected by the geometric shape of fractures. The variable aperture channel model could have predicted the experimental results for the parallel fracture with a large accuracy. It is expected that the variable aperture channel model would be effective to predict the transport of the contaminant, especially, with the flow rate variation in a fracture.

  • PDF

Study on Power Characteristics in the PEMFC Parallel Channel with Baffles through Numerical Analysis (전산해석을 통한 PEMFC 평행 유로에서 Baffle에 의한 출력특성 분석)

  • Kwon, Oh-Jung;Oh, Chang-Mook;Shin, Hee-Sun;Oh, Byeong Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.193-200
    • /
    • 2014
  • Research on flow channel designs of the separate plates is necessary to improve the PEMFC performance. On concerning the performance improvement of PEMFC, many recent studies have been made on the interdigitated flow channel using forced convection. In this paper, the interdigitated flow channel is similarly applied on the parallel flow channel with a baffle or baffles. Numerical analysis is performed by using a commercial multiphysics program, which is called COMSOL, on the parallel channel with the fully blocked baffle(FBB) and there are three variables, the position of baffle, flow direction and flow velocity. Each power of the variables is resulted from the fixed 0.5V, the voltage from 80 percents of the maximum power. Finally, based on the full factorial designs(FFD), one of the design of experiments(DOE), each factor which has several levels lead to the conclusion. The analysis of the main effects and interactions of the factors is useful to find the most influenced factor to improve the power.

Fast High-throughput Screening of the H1N1 Virus by Parallel Detection with Multi-channel Microchip Electrophoresis

  • Zhang, Peng;Park, Guenyoung;Kang, Seong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1082-1086
    • /
    • 2014
  • A multi-channel microchip electrophoresis (MCME) method with parallel laser-induced fluorescence (LIF) detection was developed for rapid screening of H1N1 virus. The hemagglutinin (HA) and nucleocapsid protein (NP) gene of H1N1 virus were amplified using polymerase chain reaction (PCR). The amplified PCR products of the H1N1 virus DNA (HA, 116 bp and NP, 195 bp) were simultaneously detected within 25 s in three parallel channels using an expanded laser beam and a charge-coupled device camera. The parallel separations were demonstrated using a sieving gel matrix of 0.3% poly(ethylene oxide) ($M_r$ = 8,000,000) in $1{\times}$ TBE buffer (pH 8.4) with a programmed step electric field strength (PSEFS). The method was ~20 times faster than conventional slab gel electrophoresis, without any loss of resolving power or reproducibility. The proposed MCME/PSEFS assay technique provides a simple and accurate method for fast high-throughput screening of infectious virus DNA molecules under 400 bp.

Numerical Investigation of the Flow Pulsation in the Gap connecting with Two Parallel Rectangular Channels with Different Cross-section Areas (크기가 다른 단면을 가진 평행한 사각 유로를 연결하는 협소유로의 맥동유동에 관한 수치해석)

  • Seo, Jeong-Sik;Shin, Jong-Kuen;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.512-519
    • /
    • 2009
  • Flow pulsation in the gap connecting with two parallel channels is investigated by RANS and URANS approaches. The two parallel channels are connected by a small channel called for a gap. The parallel channels are designed to have different cross section area with its ratio of 0.5. Computations are conducted using a CFX 11.0 code. The bulk Reynolds number is 60,000. Predicted results are compared with the previous experimental data. Mean velocity profile at the center of gap region are compared with experiments for its validation. Spectral analysis on the lateral velocity in the center of the gap was performed. Auto correlation for the axial-flow velocity pattern was presented. The unsteady structure of the flow pulsation was visualized in the region of the gap in the parallel channel.

Low-Complexity Triple-Error-Correcting Parallel BCH Decoder

  • Yeon, Jaewoong;Yang, Seung-Jun;Kim, Cheolho;Lee, Hanho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.465-472
    • /
    • 2013
  • This paper presents a low-complexity triple-error-correcting parallel Bose-Chaudhuri-Hocquenghem (BCH) decoder architecture and its efficient design techniques. A novel modified step-by-step (m-SBS) decoding algorithm, which significantly reduces computational complexity, is proposed for the parallel BCH decoder. In addition, a determinant calculator and a error locator are proposed to reduce hardware complexity. Specifically, a sharing syndrome factor calculator and a self-error detection scheme are proposed. The multi-channel multi-parallel BCH decoder using the proposed m-SBS algorithm and design techniques have considerably less hardware complexity and latency than those using a conventional algorithms. For a 16-channel 4-parallel (1020, 990) BCH decoder over GF($2^{12}$), the proposed design can lead to a reduction in complexity of at least 23 % compared to conventional architecttures.