• Title/Summary/Keyword: Parallel PCG Method

Search Result 10, Processing Time 0.02 seconds

PARALLEL PERFORMANCE OF THE Gℓ-PCG METHOD FOR IMAGE DEBLURRING PROBLEMS

  • YUN, JAE HEON
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.317-330
    • /
    • 2018
  • We first provide how to apply the global preconditioned conjugate gradient ($G{\ell}-PCG$) method with Kronecker product preconditioners to image deblurring problems with nearly separable point spread functions. We next provide a coarse-grained parallel image deblurring algorithm using the $G{\ell}-PCG$. Lastly, we provide numerical experiments for image deblurring problems to evaluate the effectiveness of the $G{\ell}-PCG$ with Kronecker product preconditioner by comparing its performance with those of the $G{\ell}-CG$, CGLS and preconditioned CGLS (PCGLS) methods.

PCG Algorithms for Development of PC level Parallel Structural Analysis Method (PC level 병렬 구조해석법 개발을 위한 PCG 알고리즘)

  • 박효선;박성무;권윤한
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.362-369
    • /
    • 1998
  • The computational environment in which engineers perform their designs has been rapidly evolved from coarse serial machines to massively parallel machines. Although the recent development of high-performance computers are available for a number of years, only limited successful applications of the new computational environments in computational structural engineering field has been reported due to its limited availability and large cost associated with high-performance computing. As a new computational model for high-performance engineering computing without cost and availability problems, parallel structural analysis models for large scale structures on a network of personal computers (PCs) are presented in this paper. In structural analysis solving routine for the linear system of equations is the most time consuming part. Thus, the focus is on the development of efficient preconditioned conjugate gradient (PCG) solvers on the proposed computational model. Two parallel PCG solvers, PPCG-I and PPCG-II, are developed and applied to analysis of large scale space truss structures.

  • PDF

A VARIANT OF BLOCK INCOMPLETE FACTORIZATION PRECONDITIONERS FOR A SYMMETRIC H-MATRIX

  • Yun, Jae-Heon;Kim, Sang-Wook
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.705-720
    • /
    • 2001
  • We propose a variant of parallel block incomplete factorization preconditioners for a symmetric block-tridiagonal H-matrix. Theoretical properties of these block preconditioners are compared with those of block incomplete factoriztion preconditioners for the corresponding somparison matrix. Numerical results of the preconditioned CG(PCG) method using these block preconditioners are compared with those of PCG using other types of block incomplete factorization preconditioners. Lastly, parallel computations of the block incomplete factorization preconditioners are carried out on the Cray C90.

Parallel Processing of 3D Rigid-Plastic FEM on a Cluster System (클러스터 시스템에서 3차원 강소성 유한요소법의 병렬처리)

  • Choi Young;Seo Yongwie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.122-129
    • /
    • 2005
  • On the cluster system, the parallel code of rigid-plastic FEM has been developed. The cluster system, Simforge, has 15 processors and the total memory is 4.5GBytes. In the developed parallel code, the distributed data of the column-wise partitioned stiffness are stored as the compressed row storage and the diagonal preconditioned conjugate gradient solver is applied. The analysis of block upsetting is performed with the parallel code on Simforge cluster system. In this paper, the analysis results are compared and discussed.

Distributed Structural Analysis Algorithms for Large-Scale Structures based on PCG Algorithms (대형구조물의 분산구조해석을 위한 PCG 알고리즘)

  • 권윤한;박효선
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.385-396
    • /
    • 1999
  • In the process of structural design for large-scale structures with several thousands of degrees of freedom, a plethora of structural calculations with large amount of data storage are required to obtain the forces and displacements of the members. However, current computational environment with single microprocessor such as a personal computer or a workstation is not capable of generating a high-level of efficiency in structural analysis and design process for large-scale structures. In this paper, a high-performance parallel computing system interconnected by a network of personal computers is proposed for an efficient structural analysis. Two distributed structural analysis algorithms are developed in the form of distributed or parallel preconditioned conjugate gradient (DPCG) method. To enhance the performance of the developed distributed structural analysis algorithms, the number of communications and the size of data to be communicated are minimized. These algorithms are applied to the structural analyses of three large space structures as well as a 144-story tube-in-tube framed structure.

  • PDF

A Parallel Algorithm for Large DOF Structural Analysis Problems (대규모 자유도 문제의 구조해석을 위한 병렬 알고리즘)

  • Kim, Min-Seok;Lee, Jee-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.475-482
    • /
    • 2010
  • In this paper, an efficient two-level parallel domain decomposition algorithm is suggested to solve large-DOF structural problems. Each subdomain is composed of the coarse problem and local problem. In the coarse problem, displacements at coarse nodes are computed by the iterative method that does not need to assemble a stiffness matrix for the whole coarse problem. Then displacements at local nodes are computed by Multi-Frontal Sparse Solver. A parallel version of PCG(Preconditioned Conjugate Gradient Method) is developed to solve the coarse problem iteratively, which minimizes the data communication amount between processors to increase the possible problem DOF size while maintaining the computational efficiency. The test results show that the suggested algorithm provides scalability on computing performance and an efficient approach to solve large-DOF structural problems.

A dynamic analysis algorithm for RC frames using parallel GPU strategies

  • Li, Hongyu;Li, Zuohua;Teng, Jun
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.1019-1039
    • /
    • 2016
  • In this paper, a parallel algorithm of nonlinear dynamic analysis of three-dimensional (3D) reinforced concrete (RC) frame structures based on the platform of graphics processing unit (GPU) is proposed. Time integration is performed using Newmark method for nonlinear implicit dynamic analysis and parallelization strategies are presented. Correspondingly, a parallel Preconditioned Conjugate Gradients (PCG) solver on GPU is introduced for repeating solution of the equilibrium equations for each time step. The RC frames were simulated using fiber beam model to capture nonlinear behaviors of concrete and reinforcing bars. The parallel finite element program is developed utilizing Compute Unified Device Architecture (CUDA). The accuracy of the GPU-based parallel program including single precision and double precision was verified in comparison with ABAQUS. The numerical results demonstrated that the proposed algorithm can take full advantage of the parallel architecture of the GPU, and achieve the goal of speeding up the computation compared with CPU.

Parallel Topology Optimization on Distributed Memory System (분산 메모리 시스템에서의 병렬 위상 최적설계)

  • Lee Ki-Myung;Cho Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.291-298
    • /
    • 2006
  • A parallelized topology design optimization method is developed on a distributed memory system. The parallelization is based on a domain decomposition method and a boundary communication scheme. For the finite element analysis of structural responses and design sensitivities, the PCG method based on a Krylov iterative scheme is employed. Also a parallelized optimization method of optimality criteria is used to solve large-scale topology optimization problems. Through several numerical examples, the developed method shows efficient and acceptable topology optimization results for the large-scale problems.

  • PDF

Parallelized Topology Design Optimization of the Frame of Human Powered Vessel (인력선 프레임의 병렬화 위상 최적설계)

  • Kim, Hyun-Suk;Lee, Ki-Myung;Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.58-66
    • /
    • 2010
  • Topology design optimization is a method to determine the optimal distribution of material that yields the minimal compliance of structures, satisfying the constraint of allowable material volume. The method is easy to implement and widely used so that it becomes a powerful design tool in various disciplines. In this paper, a large-scale topology design optimization method is developed using the efficient adjoint sensitivity and optimality criteria methods. Parallel computing technique is required for the efficient topology optimization as well as the precise analysis of large-scale problems. Parallelized finite element analysis consists of the domain decomposition and the boundary communication. The preconditioned conjugate gradient method is employed for the analysis of decomposed sub-domains. The developed parallel computing method in topology optimization is utilized to determine the optimal structural layout of human powered vessel.

Assessment of computational performance for a vector parallel implementation: 3D probabilistic model discrete cracking in concrete

  • Paz, Carmen N.M.;Alves, Jose L.D.;Ebecken, Nelson F.F.
    • Computers and Concrete
    • /
    • v.2 no.5
    • /
    • pp.345-366
    • /
    • 2005
  • This work presents an assessment of the computational performance of a vector-parallel implementation of probabilistic model for concrete cracking in 3D. This paper shows the continuing efforts towards code optimization as reported in earlier works Paz, et al. (2002a,b and 2003). The probabilistic crack approach is based on the direct Monte Carlo method. Cracking is accounted by means of 3D interface elements. This approach considers that all nonlinearities are restricted to interface elements modeling cracks. The heterogeneity governs the overall cracking behavior and related size effects on concrete fracture. Computational kernels in the implementation are the inexact Newton iterative driver to solve the non-linear problem and a preconditioned conjugate gradient (PCG) driver to solve linearized equations, using an element by element (EBE) strategy to compute matrix-vector products. In particular the paper analyzes code behavior using OpenMP directives in parallel vector processors (PVP), such as the CRAY SV1 and CRAY T94. The impact of the memory architecture on code performance, and also some strategies devised to circumvent this issue are addressed by numerical experiment.