• Title/Summary/Keyword: Parallel Integration

Search Result 159, Processing Time 0.027 seconds

Appropriate Synchronization Time Allocation for Distributed Heterogeneous Parallel Computing Systems

  • Nidaw, Biruk Yirga;Oh, Myeong-Hoon;Kim, Young Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5446-5463
    • /
    • 2019
  • Parallel computing system components should be harmonized, and this harmonization is kept existent using synchronization time. Synchronization time affects the system in two ways. First, if we have too little synchronization time, some tasks face the problem of harmonization, as they need appropriate time to update and synchronize with the system. Second, if we allocate a large amount of time, stall system created. Random allocation of synchronization time for parallel systems slows down not only the booting time of the system but also the execution time of each application involved in the system. This paper presents a simulator used to test and allocate appropriate synchronization time for distributed and parallel heterogeneous systems. The simulator creates the parallel and heterogeneous system to be evaluated, and lets the user vary the synchronization time to optimize the booting time. NS3-cGEM5 simulator in this paper is formed by HLA-RTI federation integration of the two independent architecture and network simulators - NS3 and cGEM5. Therefore, nodes created on these simulators need synchronizations for harmonized system performance. We tested and allocated the appropriate synchronization time for our sample parallel system composed of one x86 server and three ARM clients.

A Parallel Speech Recognition Model on Distributed Memory Multiprocessors (분산 메모리 다중프로세서 환경에서의 병렬 음성인식 모델)

  • 정상화;김형순;박민욱;황병한
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.44-51
    • /
    • 1999
  • This paper presents a massively parallel computational model for the efficient integration of speech and natural language understanding. The phoneme model is based on continuous Hidden Markov Model with context dependent phonemes, and the language model is based on a knowledge base approach. To construct the knowledge base, we adopt a hierarchically-structured semantic network and a memory-based parsing technique that employs parallel marker-passing as an inference mechanism. Our parallel speech recognition algorithm is implemented in a multi-Transputer system using distributed-memory MIMD multiprocessors. Experimental results show that the parallel speech recognition system performs better in recognition accuracy than a word network-based speech recognition system. The recognition accuracy is further improved by applying code-phoneme statistics. Besides, speedup experiments demonstrate the possibility of constructing a realtime parallel speech recognition system.

  • PDF

Calculation Effect of GPU Parallel Programing for Planar Multibody System Dynamics (평면 다물체 동역학 해석에서 GPU 병렬 프로그래밍의 계산효과)

  • Jun, C.W.;Sohn, J.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.12-16
    • /
    • 2012
  • In this paper, the equations of motions for planar multibody dynamics are established for considering the parallel programming based on GPU. Cartesian coordinates are used to formulate the equations of motion and implicit integration method called HHT-alpha is employed. Open chain multibody system is considered for computer simulation. CUDA toolkit is employed for establishing the GPU parallel programming. The exactness of the analysis is verified from the comparison with ADAMS. The results from parallel computing based on GPU are compared with the results from the sequential programming based on CPU in terms of calculation time. The multiple pendulum with bodies and joints is employed for the computer simulation. In the pendulum system that has 290 bodies, the parallel program indicates an improved efficiency of about 25.5 second(15.5% improvement). It is noted that the larger the size of system is, the time efficiency is better.

Parallel Computing of Large Scale FE Model based on Explicit Lagrangian FEM (외연 Lagrangian 유한요소법 기반의 대규모 유한요소 모델 병렬처리)

  • 백승훈;김승조;이민형
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.33-40
    • /
    • 2006
  • A parallel computing strategy for finite element(FE) processing is described and implemented in nonlinear explicit FE code and its parallel performances are evaluated. A self-made linux-cluster supercomputer with 520 CPUs is used as a bench mark test bed. It is observed that speed-up is increased almost idealy even up to 256 CPUs for a large scale model. A communication over head and its effect on the parallel performance is also examined. Parallel performance is compare with the commercial code and developed code shows superior performance as the number of CPUs used are increased.

Research on Big Data Integration Method

  • Kim, Jee-Hyun;Cho, Young-Im
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • In this paper we propose the approach for big data integration so as to analyze, visualize and predict the future of the trend of the market, and that is to get the integration data model using the R language which is the future of the statistics and the Hadoop which is a parallel processing for the data. As four approaching methods using R and Hadoop, ff package in R, R and Streaming as Hadoop utility, and Rhipe and RHadoop as R and Hadoop interface packages are used, and the strength and weakness of four methods are described and analyzed, so Rhipe and RHadoop are proposed as a complete set of data integration model. The integration of R, which is popular for processing statistical algorithm and Hadoop contains Distributed File System and resource management platform and can implement the MapReduce programming model gives us a new environment where in R code can be written and deployed in Hadoop without any data movement. This model allows us to predictive analysis with high performance and deep understand over the big data.

Development and application of inverse model for reservoir heterogeneity characterization using parallel genetic algorithm

  • Kwon Sun-Il;Huh Dae-Gee;Lee Won-Suk;Kim Hyun-Tae;Kim Se-Joon;Sung Won-Mo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.719-722
    • /
    • 2003
  • This paper presents the development of reservoir characterization model equipped with parallelized genetic algorithm, and its application for a heterogeneous reservoir system with integration of the well data and multi-phase production data. A parallel processing method performed by PC-cluster was applied to the developed model in order to reduce time for an inverse calculation. By utilizing the developed model, we performed the inverse calculation with the production data obtained from three layered reservoir system to estimate porosity and permeability distribution. As a result, the pressures observed at well almost identical to those calculated by the developed model. Also, it was confirmed that parallel processing could be applied for reservoir characterization study efficiently.

  • PDF

Analysis of scattering fields by conductors with arbitrary cross-section in parallel-plate waveguide (평행판 도파관내의 산란 도체에 의한 산란파 해석)

  • 정봉식;김현정;김응수;조규완
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.65-73
    • /
    • 1995
  • In this paper, new algorithm which calculates transmission coefficient of electromagnetic wave by numerical analysis of scattered field by conductors with arbitrary cross-sections in parallel-plate waveguide is proposed. Proposed algorithm assumes magnetic current distribution on the boundary of scattering conductors, and applies Image theorem to perfect conductor surfaces of parallel-plate waveguide. Integral equations for fictitious magnetic currents on conducting boundary are set up. Magnetic current distributions on conducting boundary are expanded as exponential basis function, and using Galerkin method matrix equations are set wp. To compute matrix elements this method utilizes Fourier transform which is faster than numerical integration. Finally, frequency and incidence-angle characteristic of transmission coefficient are calculated and compared with experimental results.

  • PDF

Variable step size simulation using transmission line element (전달관로 요소를 이용한 가변스텝 시뮬레이션)

  • Hwang, Un-Kyoo;Cho, Seung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.682-687
    • /
    • 2000
  • In this paper, the simulation methods using transmission lines are studied and realized, which are necessary in design and analysis of hydraulic control systems. The basic idea of this method is that system components are separated by transmission line element for simulation. The PI-controller can keep inductance level as low as desired. It can also handle nonlinearities and discontinuities without flag signal when restarting integration. Parallel hydraulic circuits are simulated using parallel processing algorithm. To shoe that using variable timestep size in each subsystem, simulation time can be reduced. Performance of the simulation results is compared with that of Runge Kutta method.

  • PDF

Fabrication of White Light Emitting Diode Lamp Designed by Photomasks with Serial-parallel Circuits in Metal Interconnection ($\cdot$병렬 회로로 금속배선된 포토마스크로 설계된 백색LED 조명램프 제조 공정특성 연구)

  • Song, Sang-Ok;Kim, Keun-Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.3 s.12
    • /
    • pp.17-22
    • /
    • 2005
  • LED lamp was designed by the serial-parallel integration of LED chips in metal-interconnection. The 7 $4.5{\times}4.5\;in^{2}$ masks were designed with the contact type of chrome-no mirror?dark. The white epitaxial thin film was grown by metal-organic chemical vapor deposition. The active layers were consisted with the serial order of multi-quantum wells for blue, green and red lights. The fabricated LED chip showed the electroluminescence peaked at 450, 560 and 600 nm. For the current injection of 20 mA, the operating voltage was measured to 4.25 V and the optical emission power was obtained to 0.7 $\mu$W.

  • PDF

Test of a Multilayer Dose-Verification Gaseous Detector with Raster-Scan-Mode Proton Beams

  • Lee, Kyong Sei;Ahn, Sung Hwan;Han, Youngyih;Hong, Byungsik;Kim, Sang Yeol;Park, Sung Keun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.297-304
    • /
    • 2015
  • A multilayer gaseous detector has been developed for fast dose-verification measurements of raster-scan-mode therapeutic beams in particle therapy. The detector, which was constructed with eight thin parallel-plate ionization chambers (PPICs) and polymethyl methacrylate (PMMA) absorber plates, is closely tissue-equivalent in a beam's eye view. The gas-electron signals, collected on the strips and pad arrays of each PPIC, were amplified and processed with a continuous charge.integration mode. The detector was tested with 190-MeV raster-scan-mode beams that were provided by the Proton Therapy Facility at Samsung Medical Center, Seoul, South Korea. The detector responses of the PPICs for a 190-MeV raster-scan-mode proton beam agreed well with the dose data, measured using a 2D ionization chamber array (Octavius model, PTW). Furthermore, in this study it was confirmed that the detector simultaneously tracked the doses induced at the PPICs by the fast-oscillating beam, with a scanning speed of 2 m s-1. Thus, it is anticipated that the present detector, composed of thin PPICs and operating in charge.integration mode, will allow medical scientists to perform reliable fast dose-verification measurements for typical dynamic mode therapeutic beams.