• Title/Summary/Keyword: Parallel Injection

Search Result 149, Processing Time 0.024 seconds

Immunoadjuvanticity of Novel CpG ODN (Oligodeoxynucleotide)

  • Park, Su-Jung;Cho, Hyeon-Cheol;Bae, Keum-Seok;Kim, Soo-Ki
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.1
    • /
    • pp.46-52
    • /
    • 2007
  • In the course of novel TLR (Toll like receptor) 9 ligand, we found novel CpG ODN (Oligodeoxynucleotide) was active in augmenting antibody in mice. However, immune mechanism of new CpG ODNs is unclear. To clarify this, we examined immunoadjuvanticity by employing in vitro and in vivo immune profiles. In brief, in vitro treatment of novel CpG ODN upregulated the expression of TNF-$\alpha$, IL-6, and IL-12 mRNA in macrophages as well as that of IFN-$gamma$ mPNA in mouse splenocytes. In parallel, in vivo injection of novel CpG ODN directly activates macrophages and splenocytess, consequently upregulating MHC class II and CD86. Finally, we demonstrated anti-HBs antibody augmentation of novel CpG ODN. Collectively, this data indicates that novel CpG ODN is immunoadjuvant armed with Th1 typed immune machinery.

COSMIC RAY ACCELERATION AT BLAST WAVES FROM TYPE Ia SUPERNOVAE

  • Kang, Hye-Sung
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.4
    • /
    • pp.95-105
    • /
    • 2006
  • We have calculated the cosmic ray(CR) acceleration at young remnants from Type Ia supernovae expanding into a uniform interstellar medium(ISM). Adopting quasi-parallel magnetic fields, gasdynamic equations and the diffusion convection equation for the particle distribution function are solved in a comoving spherical grid which expands with the shock. Bohm-type diffusion due to self-excited $Alfv\acute{e}n$ waves, drift and dissipation of these waves in the precursor and thermal leakage injection were included. With magnetic fields amplified by the CR streaming instability, the particle energy can reach up to $10^{16}Z$ eV at young supernova remnants(SNRs) of several thousand years old. The fraction of the explosion energy transferred to the CR component asymptotes to 40-50 % by that time. For a typical SNR in a warm ISM, the accelerated CR energy spectrum should exhibit a concave curvature with the power-law slope flattening from 2 to 1.6 at $E{\gtrsim}0.1$ TeV.

평행류 열교환기의 헤더부 형상 최적화

  • 오석진;이관수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.1017-1024
    • /
    • 2001
  • The optimum shape of header part in a PFHE (parallel-flow heat exchanger) is studied. The optimal values of each geometric parameter are proposed according to their order of influence with varying the four important parameters (the injection angle of working fluid ($\Theta$), the shape of inlet(S), the location of inlet ($y_c/D_{in}$) and the height of the protruding flat tube ( $y_{b/}$ $D_{in}$ )). The optimal geometric parameters are as follows:$\Theta= -21^{\circ}C,\; S=Type\; A \;an\;y_b/D_{in}$/=0. The heat transfer rate of the optimum model, compared to that of the reference model, is increased by about 55%. The optimal geometric parameters ran be applicable to the Reynolds number ranging from 5,000 to 20,000.0.

  • PDF

Effect of Surface Roughness of Rheometer on the Slip Phenomenon in the Viscosity Measurement of PIM Feedstock (분말사출재의 점도 측정 시 측정기 표면 조도가 미끄럼 현상에 미치는 영향)

  • 이병옥;민상준
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.251-260
    • /
    • 2002
  • In the viscosity measurement of PIM feedstock, slip correction methods require a number of experiments and produce a high level of error. In this study, a rotational rheometer with a parallel-discs configuration having different surface roughness was tried to minimize the effect of the slip phenomenon. Disc surface was prepared in 3 different roughness conditions - a smooth and 2 roughened surfaces. Results with the roughened surfaces were compared with the results obtained with a slip correction method. Relationship between powder characteristics such as size and shape and a surface roughness of the disc was examined for feedstock of 4 different powders with a same binder. As results, the effect of the slip phenomenon could be sufficiently minimized on the roughened surface in most cases. However, the effect of the slip phenomenon could not be sufficiently minimized for feedstock of a round-particular-shape powder and in the case of very narrow gap size.

A Novel Multi-Quantum Well Injection Mode Diode And Its Application for the Implementation of Pulse-Mode Neural Circuits (다중 양자우물 주사형 다이오드와 펄스-모드 신경회로망 구현을 위한 그 응용)

  • Song Chung Kun
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.8
    • /
    • pp.62-71
    • /
    • 1994
  • A novel semiconductor device is proposed to be used as a processing element for the implementation of pulse-mode neural networks which consists of alternating n' GaAs quantum wells and undoped AlGaAs barriers sandwitched between n' GaAs cathode and P' GaAs anode and in simple circuit in conjunction with a parallel capacitive and resistive load the trigger circuit generates neuron-like pulse train output mimicking the function of axon hillock of biological neuron. It showed the sigmoidal relationship between the frequency of the pulse-train and the applied input DC voltage. In conjunction with MQWIMD the various neural circuits are proposed especially a neural chip monolithically integrated with photodetectors in order to perfrom the pattern recognition.

  • PDF

Diagnosing Plant Pipeline System Performance Using Radiotracer Techniques

  • Kasban, H.;Ali, Elsayed H.;Arafa, H.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.196-208
    • /
    • 2017
  • This study presents an experimental work in a petrochemical company for scanning a buried pipeline using $Tc^{99m}$ radiotracer based on the measured velocity changes, in order to determine the flow reduction along a pipeline. In this work, $Tc^{99m}$ radiotracer was injected into the pipeline and monitored by sodium iodide scintillation detectors located at several positions along the pipeline. The flow velocity has been calculated between every two consecutive detectors along the pipeline. Practically, six experiments have been carried out using two different data acquisition systems, each of them being connected to four detectors. During the fifth experiment, a bypass was discovered between the scanned pipeline and another buried parallel pipeline connected after the injection point. The results indicate that the bypass had a bad effect on the volumetric flow rate in the scanned pipeline.

MHD Hartmann flow of a Dusty Fluid with Exponential Decaying Pressure Gradient

  • ATTIA HAZEM A.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1232-1239
    • /
    • 2006
  • In the present study, the unsteady Hartmann flow with heat transfer of a viscous incompressible electrically conducting fluid under the influence of an exponentially decreasing pressure gradient is studied. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below while the fluid is acted upon by an external uniform magnetic field applied perpendicular to the plates. The equations of motion are solved analytically to yield the velocity distributions for both the fluid and dust particles. The energy equations for both the fluid and dust particles including the viscous and Joule dissipation terms, are solved numerically using finite differences to get the temperature distributions.

A New Trend of In-situ Electron Microscopy with Ion and Electron Beam Nano-Fabrication

  • Furuya, Kazuo;Tanaka, Miyoko
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.25-33
    • /
    • 2006
  • Nanofabrication with finely focused ion and electron beams is reviewed, and position and size controlled fabrication of nano-metals and -semiconductors is demonstrated. A focused ion beam (FIB) interface attached to a column of 200keV transmission electron microscope (TEM) was developed. Parallel lines and dots arrays were patterned on GaAs, Si and $SiO_2$ substrates with a 25keV $Ga^+-FIB$ of 200nm beam diameter at room temperature. FIB nanofabrication to semiconductor specimens caused amorphization and Ga injection. For the electron beam induced chemical vapor deposition (EBI-CVD), we have discovered that nano-metal dots are formed depending upon the beam diameter and the exposure time when decomposable gases such as $W(CO)_6$ were introduced at the beam irradiated areas. The diameter of the dots was reduced to less than 2.0nm with the UHV-FE-TEM, while those were limited to about 15nm in diameter with the FE-SEM. Self-standing 3D nanostructures were also successfully fabricated.

Hardware Fault Attack Resistant RSA-CRT with Parallel Support (오류주입 공격에 강건하며 병렬연산이 가능한 RSA-CRT)

  • Eun, Ha-Soo;Oh, Hee-Kuck;Kim, Sang-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.5
    • /
    • pp.59-70
    • /
    • 2012
  • RSA-CRT is one of the commonly used techniques to speedup RSA operation. Since RSA-CRT performs its operations based on the modulus of two private primes, it is about four times faster than RSA. In RSA, the two primes are normally thrown away after generating the public key pair. However, in RSA-CRT, the two primes are directly used in RSA operations. This led to hardware fault attacks which can be used to factor the public modulus. The most common way to counter these attacks is based on error propagation. In these schemes, all the outputs of RSA are affected by the infected error which makes it difficult for an adversary to use the output to factor the public modulus. However, the error propagation has sequentialized the RSA operation. Moreover, these schemes have been found to be still vulnerable to hardware fault attacks. In this paper, we propose two new RSA-CRT schemes which are both resistant to hardware fault attack and support parallel execution: one uses common modulus and the other one perform operations in each prime modulus. Both proposed schemes takes about a time equal to two exponentiations to complete the RSA operation if parallel execution is fully used and can protect the two private primes from hardware fault attacks.

ACCELERATION OF COSMIC RAYS AT COSMIC SHOCKS

  • KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • Nonthermal particles can be produced due to incomplete thermalization at collisionless shocks and further accelerated to very high energies via diffusive shock acceleration. In a previous study we explored the cosmic ray (CR) acceleration at cosmic shocks through numerical simulations of CR modified, quasi-parallel shocks in 1D plane-parallel geometry with the physical parameters relevant for the shocks emerging in the large scale structure formation of the universe (Kang & Jones 2002). Specifically we considered pancake shocks driven by accretion flows with $U_o = 1500 km\;s^{-l}$ and the preshock gas temperature of $T_o = 10^4 - 10^8K$. In order to consider the CR acceleration at shocks with a broader range of physical properties, in this contribution we present additional simulations with accretion flows with $U_o = 75 - 1500 km\;s^{-l}$ and $T_o = 10^4K$. We also compare the new simulation results with those reported in the previous study. For a given Mach number, shocks with higher speeds accelerate CRs faster with a greater number of particles, since the acceleration time scale is $t_{acc}\;{\propto}\;U_o^{-2}$. However, two shocks with a same Mach number but with different shock speeds evolve qualitatively similarly when the results are presented in terms of diffusion length and time scales. Therefore, the time asymptotic value for the fraction of shock kinetic energy transferred to CRs is mainly controlled by shock Mach number rather than shock speed. Although the CR acceleration efficiency depends weakly on a well-constrained injection parameter, $\epsilon$, and on shock speed for low shock Mach numbers, the dependence disappears for high shock Mach numbers. We present the 'CR energy ratio', ${\phi}(M_s)$, for a wide range of shock parameters and for $\epsilon$ = 0.2 - 0.3 at terminal time of our simulations. We suggest that these values can be considered as time-asymptotic values for the CR acceleration efficiency, since the time-dependent evolution of CR modified shocks has become approximately self-similar before the terminal time.