DOI QR코드

DOI QR Code

COSMIC RAY ACCELERATION AT BLAST WAVES FROM TYPE Ia SUPERNOVAE

  • Kang, Hye-Sung (Department of Earth Sciences, Pusan National University)
  • Published : 2006.12.31

Abstract

We have calculated the cosmic ray(CR) acceleration at young remnants from Type Ia supernovae expanding into a uniform interstellar medium(ISM). Adopting quasi-parallel magnetic fields, gasdynamic equations and the diffusion convection equation for the particle distribution function are solved in a comoving spherical grid which expands with the shock. Bohm-type diffusion due to self-excited $Alfv\acute{e}n$ waves, drift and dissipation of these waves in the precursor and thermal leakage injection were included. With magnetic fields amplified by the CR streaming instability, the particle energy can reach up to $10^{16}Z$ eV at young supernova remnants(SNRs) of several thousand years old. The fraction of the explosion energy transferred to the CR component asymptotes to 40-50 % by that time. For a typical SNR in a warm ISM, the accelerated CR energy spectrum should exhibit a concave curvature with the power-law slope flattening from 2 to 1.6 at $E{\gtrsim}0.1$ TeV.

Keywords

References

  1. Aharonian, F. A et al. , H.E.S.S. collaboration, 2004, High-energy particle acceleration in the shell of a supernova remnant, Nature, 432, 75 https://doi.org/10.1038/nature02960
  2. Bamba, A., Yamazaki, R, Ueno, M. & Koyama, K., 2003, Small-Scale Structure of the SN 1006 Shock with Chandra Observations, ApJ, 589, 827 https://doi.org/10.1086/374687
  3. Bell, A. R., 1978, The acceleration of cosmic rays in shock fronts. I, MNRAS, 182, 147 https://doi.org/10.1093/mnras/182.2.147
  4. Berezhko, E. G., Ksenofontov, L. T., & Yelshin, V., 1995, Efficiency of CR acceleration in supernova remnants, Nuclear Physic B., 39, 171
  5. Berezhko, E. G., & Volk, H. J., 1997, Kinetic theory of cosmic rays and gamma rays in supernova remnants. I. Uniform interstellar medium, Astropart. Phys. 7, 183 https://doi.org/10.1016/S0927-6505(97)00016-9
  6. Berezhko, E. G., Ksenofontov, L. T., & Volk, H. J., 2003, Confirmation of strong magnetic field amplification and nuclear cosmic ray acceleration in SN 1006, A&Ap, 423, L11
  7. Berezhko, E. G., & Volk, H. J., 2006, Theory of cosmic ray production in the supernova remnant RX J1713.7-3946, A&Ap, 451, 981 https://doi.org/10.1051/0004-6361:20054595
  8. Blandford, R. D., & Ostriker, J. P., 1978, Particle acceleration by astrophysical shocks, ApJ, 221, L29 https://doi.org/10.1086/182658
  9. Blandford, R. D., & Eichler, D., 1987, Particle acceleration at astrophysical shocks - a theory of cosmic-ray origin, Phys. Rept., 154, 1 https://doi.org/10.1016/0370-1573(87)90134-7
  10. Drury, L. O'C., 1983, An Introduction to the Theory of Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rept. Prog. Phys., 46, 973 https://doi.org/10.1088/0034-4885/46/8/002
  11. Drury, L. O'C., Ellison, D. E., Aharonian, F. A. et al. ,2001, Test of galactic cosmic-ray source models - Working Group Report, Space Science Reviews, 99, 329 https://doi.org/10.1023/A:1013825905795
  12. Giacalone, J., 2005, The Efficient Acceleration of Thermal Protons by Perpendicular Shocks ApJ, 628, L37 https://doi.org/10.1086/432510
  13. Jones, T. W., 1993, Alfven wave transport effects in the time evolution of parallel cosmic-ray-modified shocks ApJ, 413, 619 https://doi.org/10.1086/173031
  14. Kang, H., & Jones, T. W., 1991, Numerical studies of diffusive particle acceleration in supernova remnants, MNRAS, 249, 439 https://doi.org/10.1093/mnras/249.3.439
  15. Kang, H., Jones, T. W., & Ryu, D., 1992, Acoustic instability in cosmic ray mediated shocks, ApJ, 385, 193 https://doi.org/10.1086/170927
  16. Kang, H., Jones, T. W., LeVeque, R. J., & Shyue, K. M., 2001, Time Evolution of Cosmic-Ray Modified Plane Shocks, ApJ, 550, 737 https://doi.org/10.1086/319804
  17. Kang, H., Jones, T. W., & Gieseler, U. D. J., 2002, Numerical Studies of Cosmic-Ray Injection and Acceleration, ApJ, 579, 337 https://doi.org/10.1086/342724
  18. Kang, H., & Jones, T. W., 2002, Acceleration of Cosmic Rays at Large Scale Cosmic Shocks in the Universe, Journal of Korean Astronomical Society, 35, 159 https://doi.org/10.5303/JKAS.2002.35.4.159
  19. Kang, H., 2003, Cosmic Ray Acceleration at Cosmological Shocks: Numerical Simulations of CR Modified Plane-Parallel Shocks Journal of Korean Astronomical Society, 36, 1
  20. Kang, H., & Jones, T. W., 2006, Numerical studies of diffusive shock acceleration at spherical shocks Astropart. Phys. 25, 246 https://doi.org/10.1016/j.astropartphys.2006.02.006
  21. Koyama, K., Petre, R., Gotthelf, E. V. et al. ,1995, Evidence for Shock Acceleration of High-Energy Electrons in the Supernova Remnant SN:1006, Nature, 378, 255 https://doi.org/10.1038/378255a0
  22. Lagage, P. O., & Cesarsky, C. J., 1983, The maximum energy of cosmic rays accelerated by supernova shocks, A&Ap, 118, 223
  23. Lucek, S. G., & Bell, A. R., 2000, Non-linear amplification of a magnetic field driven by cosmic ray streaming, MNRAS, 314, 65 https://doi.org/10.1046/j.1365-8711.2000.03363.x
  24. Malkov, M. A., & Drury, L. O'C., 2001, Nonlinear theory of diffusive acceleration of particles by shock waves, Rep. Progr. Phys. 64, 429 https://doi.org/10.1088/0034-4885/64/4/201
  25. Malkov, M. A., & Volk, H. J., 1998, Diffusive ion acceleration at shocks: the problem of injection, Adv. Space Res. 21, 551 https://doi.org/10.1016/S0273-1177(97)00961-7
  26. Ptuskin, V. S., & Zirakashvili, V. N., 2003, Limits on diffusive shock acceleration in supernova remnants in the presence of cosmic-ray streaming instability and wave dissipation, A&Ap, 403, 1 https://doi.org/10.1051/0004-6361:20030323
  27. Skilling, J., 1975, Cosmic ray streaming. I - Effect of Alfven waves on particles, MNRAS, 172, 557 https://doi.org/10.1093/mnras/172.3.557
  28. Volk, H. J., Berezhko, E. G., & Ksenofontov, L. T., 2003, Variation of cosmic ray injection across supernova shocks, A&Ap, 409, 563 https://doi.org/10.1051/0004-6361:20031082
  29. Volk, H. J., Berezhko, E. G., & Ksenofontov, L. T., 2005, Magnetic field amplification in Tycho and other shell-type supernova remnants A&Ap, 433, 229 https://doi.org/10.1051/0004-6361:20042015
  30. Volk, H. J., Zank, L. A., & Zank, G. P., 1988, Cosmic ray spectrum produced by supernova remnants with an upper limit on wave dissipation, A&Ap, 198, 274

Cited by

  1. NONTHERMAL RADIATION FROM COSMIC-RAY MODIFIED SHOCKS vol.745, pp.2, 2012, https://doi.org/10.1088/0004-637X/745/2/146
  2. Non-thermal radiation from Type Ia supernova remnants vol.414, pp.4, 2011, https://doi.org/10.1111/j.1365-2966.2011.18652.x
  3. COSMIC RAY SPECTRUM IN SUPERNOVA REMNANT SHOCKS vol.43, pp.2, 2010, https://doi.org/10.5303/JKAS.2010.43.2.025