• Title/Summary/Keyword: Parallel Image Processing

Search Result 343, Processing Time 0.026 seconds

Image Processing Processor Design for Artificial Intelligence Based Service Robot (인공지능 기반 서비스 로봇을 위한 영상처리 프로세서 설계)

  • Moon, Ji-Youn;Kim, Soo-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.633-640
    • /
    • 2022
  • As service robots are applied to various fields, interest in an image processing processor that can perform an image processing algorithm quickly and accurately suitable for each task is increasing. This paper introduces an image processing processor design method applicable to robots. The proposed processor consists of an AGX board, FPGA board, LiDAR-Vision board, and Backplane board. It enables the operation of CPU, GPU, and FPGA. The proposed method is verified through simulation experiments.

APBT-JPEG Image Coding Based on GPU

  • Wang, Chengyou;Shan, Rongyang;Zhou, Xiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1457-1470
    • /
    • 2015
  • In wireless multimedia sensor networks (WMSN), the latency of transmission is an increasingly problem. With the improvement of resolution, the time cost in image and video compression is more and more, which seriously affects the real-time of WMSN. In JPEG system, the core of the system is DCT, but DCT-JPEG is not the best choice. Block-based DCT transform coding has serious blocking artifacts when the image is highly compressed at low bit rates. APBT is used in this paper to solve that problem, but APBT does not have a fast algorithm. In this paper, we analyze the structure in JPEG and propose a parallel framework to speed up the algorithm of JPEG on GPU. And we use all phase biorthogonal transform (APBT) to replace the discrete cosine transform (DCT) for the better performance of reconstructed image. Therefore, parallel APBT-JPEG is proposed to solve the real-time of WMSN and the blocking artifacts in DCT-JPEG in this paper. We use the CUDA toolkit based on GPU which is released by NVIDIA to design the parallel algorithm of APBT-JPEG. Experimental results show that the maximum speedup ratio of parallel algorithm of APBT-JPEG can reach more than 100 times with a very low version GPU, compared with conventional serial APBT-JPEG. And the reconstructed image using the proposed algorithm has better performance than the DCT-JPEG in terms of objective quality and subjective effect. The proposed parallel algorithm based on GPU of APBT also can be used in image compression, video compression, the edge detection and some other fields of image processing.

A Study for The Parallel Processing in The Polyphase Encoder (Polyphase 인코더의 병렬 처리에 대한 연구)

  • Cho, Dong-Sik;Ra, Sung-Woong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.199-205
    • /
    • 2010
  • In this paper, we proposed a polyphase encoder that consists of multiple internal encoders. The multiple internal encoders were configured in parallel. Successive frames of image were distributed to separate encoders by way of a image divider and processed in parallel. In this way, the sampling rate of the encoder was reduced by the factor of number of encoders in parallel. In our design, however, the PSNR is exactly the same as that to be achieved with the conventional single-phase encoder, which should require a much higher sampling rate.

A Controllable Parallel CBC Block Cipher Mode of Operation

  • Ke Yuan;Keke Duanmu;Jian Ge;Bingcai Zhou;Chunfu Jia
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.24-37
    • /
    • 2024
  • To address the requirement for high-speed encryption of large amounts of data, this study improves the widely adopted cipher block chaining (CBC) mode and proposes a controllable parallel cipher block chaining (CPCBC) block cipher mode of operation. The mode consists of two phases: extension and parallel encryption. In the extension phase, the degree of parallelism n is determined as needed. In the parallel encryption phase, n cipher blocks generated in the expansion phase are used as the initialization vectors to open n parallel encryption chains for parallel encryption. The security analysis demonstrates that CPCBC mode can enhance the resistance to byte-flipping attacks and padding oracle attacks if parallelism n is kept secret. Security has been improved when compared to the traditional CBC mode. Performance analysis reveals that this scheme has an almost linear acceleration ratio in the case of encrypting a large amount of data. Compared with the conventional CBC mode, the encryption speed is significantly faster.

Improved Parallelization of Cell Contour Extraction Algorithm (개선된 세포 외곽선 추출 알고리즘의 병렬화)

  • Yu, Suk Hyun;Cho, Woo Hyun;Kwon, Hee Yong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.740-747
    • /
    • 2017
  • A fast cell contour extraction method using CUDA parallel processing technique is presented. The cell contour extraction is one of important processes to analyze cell information in pathology. However, conventional sequential contour extraction methods are slow for a huge high-resolution medical image, so they are not adequate to use in the field. We developed a parallel morphology operation algorithm to extract cell contour more quickly. The algorithm can create an inner contour and fail to extract the contour from the concave part of the cell. We solved these problems by subdividing the contour extraction process into four steps: morphology operation, labeling, positioning and contour extraction. Experimental results show that the proposed method is four times faster than the conventional one.

Design and Implementation of High-Resolution Integral Imaging Display System using Expanded Depth Image

  • Song, Min-Ho;Lim, Byung-Muk;Ryu, Ga-A;Ha, Jong-Sung;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.14 no.3
    • /
    • pp.1-6
    • /
    • 2018
  • For 3D display applications, auto-stereoscopic display methods that can provide 3D images without glasses have been actively developed. This paper is concerned with developing a display system for elemental images of real space using integral imaging. Unlike the conventional method, which reduces a color image to the level as much as a generated depth image does, we have minimized original color image data loss by generating an enlarged depth image with interpolation methods. Our method was efficiently implemented by applying a GPU parallel processing technique with OpenCL to rapidly generate a large amount of elemental image data. We also obtained experimental results for displaying higher quality integral imaging rather than one generated by previous methods.

Improvement of Processing Speed for UAV Attitude Information Estimation Using ROI and Parallel Processing

  • Ha, Seok-Wun;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.155-161
    • /
    • 2021
  • Recently, researches for military purposes such as precision tracking and mission completion using UAVs have been actively conducted. In particular, if the posture information of the leading UAV is estimated and the mission UAV uses this information to follow in stealth and complete its mission, the speed of the posture information estimation of the guide UAV must be processed in real time. Until recently, research has been conducted to accurately estimate the posture information of the leading UAV using image processing and Kalman filters, but there has been a problem in processing speed due to the sequential processing of the processing process. Therefore, in this study we propose a way to improve processing speed by applying methods that the image processing area is limited to the ROI area including the object, not the entire area, and the continuous processing is distributed to OpenMP-based multi-threads and processed in parallel with thread synchronization to estimate attitude information. Based on the experimental results, it was confirmed that real-time processing is possible by improving the processing speed by more than 45% compared to the basic processing, and thus the possibility of completing the mission can be increased by improving the tracking and estimating speed of the mission UAV.

Analog Parallel Processing Algorithm of CNN-UM for Interframe Change Detection (프레임간의 영상 변화 검출을 위한 CNN-UM의 아날로그 병렬연산처리 알고리즘)

  • 김형석;김선철;손홍락;박영수;한승조
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • The CNN-UM algorithm which performs the analog parallel subtraction of images has been developed and its application study to the moving target detection has been done. The CNN-UM is the state of the art computation architecture with high computational potential of analog parallel processing. It is one of the strong candidates for the next generation of computing system which fulfills requirement of the real-time image processing. One weakness of the CNN-UM is that its analog parallel processing function is not fully utilized for the inter frame processing. If two subsequent image frames are superimposed with opposite signs on identical capacitors for short time period, the analog subtraction between them is achieved. The Principle of such temporal inter-frame processing algorithm has been described and its mathematical analysis has been done. Practical usefulness of the proposed algorithm has also been verified through the application for moving target detection.

A Study on Parallel Performance Optimization Method for Acceleration of High Resolution SAR Image Processing (고해상도 SAR 영상처리 고속화를 위한 병렬 성능 최적화 기법 연구)

  • Lee, Kyu Beom;Kim, Gyu Bin;An, Sol Bo Reum;Cho, Jin Yeon;Lim, Byoung-Gyun;Kim, Dong-Hyun;Kim, Jeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.503-512
    • /
    • 2018
  • SAR(Synthetic Aperture Radar) is a technology to acquire images by processing signals obtained from radar, and there is an increasing demand for utilization of high-resolution SAR images. In this paper, for high-speed processing of high-resolution SAR image data, a study for SAR image processing algorithms to achieve optimal performance in multi-core based computer architecture is performed. The performance deterioration due to a large amount of input/output data for high resolution images is reduced by maximizing the memory utilization, and the parallelization ratio of the code is increased by using dynamic scheduling and nested parallelism of OpenMP. As a result, not only the total computation time is reduced, but also the upper bound of parallel performance is increased and the actual parallel performance on a multi-core system with 10 cores is improved by more than 8 times. The result of this study is expected to be used effectively in the development of high-resolution SAR image processing software for multi-core systems with large memory.

Parallel Computing For Computational Geometry (컴퓨터 기하학을 위한 병렬계산)

  • O, Seung-Jun
    • Electronics and Telecommunications Trends
    • /
    • v.4 no.1
    • /
    • pp.93-117
    • /
    • 1989
  • Computational Geometry is concerned with the design and analysis of computational algorithms which solve geometry problems. Geometry problems have a large number of applications areas such as pattern recognition, image processing, computer graphics, VLSI design and statistics since they involve inherently geometric problems for which efficient algorithms have to be developed. Several parallel algorithms, based on various parallel computation models, have been proposed for solving geometric problems. We review the current status of the parallel algorithms in computational geometry.