• Title/Summary/Keyword: Parallel GPU

Search Result 284, Processing Time 0.026 seconds

Design and Implementation of an Approximate Surface Lens Array System based on OpenCL (OpenCL 기반 근사곡면 렌즈어레이 시스템의 설계 및 구현)

  • Kim, Do-Hyeong;Song, Min-Ho;Jung, Ji-Sung;Kwon, Ki-Chul;Kim, Nam;Kim, Kyung-Ah;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.10
    • /
    • pp.1-9
    • /
    • 2014
  • Generally, integral image used for autostereoscopic 3d display is generated for flat lens array, but flat lens array cannot provide a wide range of view for generated integral image because of narrow range of view. To make up for this flat lens array's weak point, curved lens array has been proposed, and due to technical and cost problem, approximate surface lens array composed of several flat lens array is used instead of ideal curved lens array. In this paper, we constructed an approximate surface lens array arranged for $20{\times}8$ square flat lens in 100mm radius sphere, and we could get about twice angle of view compared to flat lens array. Specially, unlike existing researches which manually generate integral image, we propose an OpenCL GPU parallel process algorithm for generating real-time integral image. As a result, we could get 12-20 frame/sec speed about various 3D volume data from $15{\times}15$ approximate surface lens array.

Multi-scale Texture Synthesis (다중 스케일 텍스처 합성)

  • Lee, Sung-Ho;Park, Han-Wook;Lee, Jung;Kim, Chang-Hun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.2
    • /
    • pp.19-25
    • /
    • 2008
  • We synthesize a texture with different structures at different scales. Our technique is based on deterministic parallel synthesis allowing real-time processing on a GPU. A new coordinate transformation operator is used to construct a synthesized coordinate map based on different exemplars at different scales. The runtime overhead is minimal because this operator can be precalculated as a small lookup table. Our technique is effective for upsampling texture-rich images, because the result preserves texture detail well. In addition, a user can design a texture by coloring a low-resolution control image. This design tool can also be used for the interactive synthesis of terrain in the style of a particular exemplar, using the familiar 'raise and lower' airbrush to specify elevation.

  • PDF

Design and Implementation of Accelerator Architecture for Binary Weight Network on FPGA with Limited Resources (한정된 자원을 갖는 FPGA에서의 이진가중치 신경망 가속처리 구조 설계 및 구현)

  • Kim, Jong-Hyun;Yun, SangKyun
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.225-231
    • /
    • 2020
  • In this paper, we propose a method to accelerate BWN based on FPGA with limited resources for embedded system. Because of the limited number of logic elements available, a single computing unit capable of handling Conv-layer, FC-layer of various sizes must be designed and reused. Also, if the input feature map can not be parallel processed at one time, the output must be calculated by reading the inputs several times. Since the number of available BRAM modules is limited, the number of data bits in the BWN accelerator must be minimized. The image classification processing time of the BWN accelerator is superior when compared with a embedded CPU and is faster than a desktop PC and 50% slower than a GPU system. Since the BWN accelerator uses a slow clock of 50MHz, it can be seen that the BWN accelerator is advantageous in performance versus power.

Development and Speed Comparison of Convolutional Neural Network Using CUDA (CUDA를 이용한 Convolutional Neural Network의 구현 및 속도 비교)

  • Ki, Cheol-min;Cho, Tai-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.335-338
    • /
    • 2017
  • Currently Artificial Inteligence and Deep Learning are social issues, and These technologies are applied to various fields. A good method among the various algorithms in Artificial Inteligence is Convolutional Neural Network. Convolutional Neural Network is a form that adds convolution layers that extracts features by convolution operation on a general neural network method. If you use Convolutional Neural Network as small amount of data, or if the structure of layers is not complicated, you don't have to pay attention to speed. But the learning time is long as the size of the learning data is large and the structure of layers is complicated. So, GPU-based parallel processing is a lot. In this paper, we developed Convolutional Neural Network using CUDA and Learning speed is faster and more efficient than the method using the CPU.

  • PDF

Real-time Eye Contact System Using a Kinect Depth Camera for Realistic Telepresence (Kinect 깊이 카메라를 이용한 실감 원격 영상회의의 시선 맞춤 시스템)

  • Lee, Sang-Beom;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4C
    • /
    • pp.277-282
    • /
    • 2012
  • In this paper, we present a real-time eye contact system for realistic telepresence using a Kinect depth camera. In order to generate the eye contact image, we capture a pair of color and depth video. Then, the foreground single user is separated from the background. Since the raw depth data includes several types of noises, we perform a joint bilateral filtering method. We apply the discontinuity-adaptive depth filter to the filtered depth map to reduce the disocclusion area. From the color image and the preprocessed depth map, we construct a user mesh model at the virtual viewpoint. The entire system is implemented through GPU-based parallel programming for real-time processing. Experimental results have shown that the proposed eye contact system is efficient in realizing eye contact, providing the realistic telepresence.

Scalable Ontology Reasoning Using GPU Cluster Approach (GPU 클러스터 기반 대용량 온톨로지 추론)

  • Hong, JinYung;Jeon, MyungJoong;Park, YoungTack
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.61-70
    • /
    • 2016
  • In recent years, there has been a need for techniques for large-scale ontology inference in order to infer new knowledge from existing knowledge at a high speed, and for a diversity of semantic services. With the recent advances in distributed computing, developments of ontology inference engines have mostly been studied based on Hadoop or Spark frameworks on large clusters. Parallel programming techniques using GPGPU, which utilizes many cores when compared with CPU, is also used for ontology inference. In this paper, by combining the advantages of both techniques, we propose a new method for reasoning large RDFS ontology data using a Spark in-memory framework and inferencing distributed data at a high speed using GPGPU. Using GPGPU, ontology reasoning over high-capacity data can be performed as a low cost with higher efficiency over conventional inference methods. In addition, we show that GPGPU can reduce the data workload on each node through the Spark cluster. In order to evaluate our approach, we used LUBM ranging from 10 to 120. Our experimental results showed that our proposed reasoning engine performs 7 times faster than a conventional approach which uses a Spark in-memory inference engine.

Processing Speed Improvement of Software for Automatic Corner Radius Analysis of Laminate Composite using CUDA (CUDA를 이용한 적층 복합재 구조물 코너 부의 자동 구조 해석 소프트웨어의 처리 속도 향상)

  • Hyeon, Ju-Ha;Kang, Moon-Hyae;Moon, Yong-Ho;Ha, Seok-Wun
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.7
    • /
    • pp.33-40
    • /
    • 2019
  • As aerospace industry has been activated recently, it is required to commercialize composite analysis software. Until now, commercial software has been mainly used for analyzing composites, but it has been difficult to use due to high price and limited functions. In order to solve this problem, automatic analysis software for both in-plane and corner radius strength, which are all made on-line and generalized, has recently been developed. However, these have the disadvantage that they can not be analyzed simultaneously with multiple failure criteria. In this paper, we propose a method to greatly improve the processing speed while simultaneously handling the analysis of multiple failure criteria using a parallel processing platform that only works with a GPU equipped with a CUDA core. We have obtained satisfactory results when the analysis speed is experimented on the vast structure data.

AMG-CG method for numerical analysis of high-rise structures on heterogeneous platforms with GPUs

  • Li, Zuohua;Shan, Qingfei;Ning, Jiafei;Li, Yu;Guo, Kaisheng;Teng, Jun
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.93-105
    • /
    • 2022
  • The degrees of freedom (DOFs) of high-rise structures increase rapidly due to the need for refined analysis, which poses a challenge toward a computationally efficient method for numerical analysis of high-rise structures using the finite element method (FEM). This paper presented an efficient iterative method, an algebraic multigrid (AMG) with a Jacobi overrelaxation smoother preconditioned conjugate gradient method (AMG-CG) used for solving large-scale structural system equations running on heterogeneous platforms with parallel accelerator graphics processing units (GPUs) enabled. Furthermore, an AMG-CG FEM application framework was established for the numerical analysis of high-rise structures. In the proposed method, the coarsening method, the optimal relaxation coefficient of the JOR smoother, the smoothing times, and the solution method for the coarsest grid of an AMG preconditioner were investigated via several numerical benchmarks of high-rise structures. The accuracy and the efficiency of the proposed FEM application framework were compared using the mature software Abaqus, and there were speedups of up to 18.4x when using an NVIDIA K40C GPU hosted in a workstation. The results demonstrated that the proposed method could improve the computational efficiency of solving structural system equations, and the AMG-CG FEM application framework was inherently suitable for numerical analysis of high-rise structures.

A Study on Improved Image Matching Method using the CUDA Computing (CUDA 연산을 이용한 개선된 영상 매칭 방법에 관한 연구)

  • Cho, Kyeongrae;Park, Byungjoon;Yoon, Taebok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2749-2756
    • /
    • 2015
  • Recently, Depending on the quality of data increases, the problem of time-consuming to process the image is raised by being required to accelerate the image processing algorithms, in a traditional CPU and CUDA(Compute Unified Device Architecture) based recognition system for computing speed and performance gains compared to OpenMP When character recognition has been learned by the system to measure the input by the character data matching is implemented in an environment that recognizes the region of the well, so that the font of the characters image learning English alphabet are each constant and standardized in size and character an image matching method for calculating the matching has also been implemented. GPGPU (General Purpose GPU) programming platform technology when using the CUDA computing techniques to recognize and use the four cores of Intel i5 2500 with OpenMP to deal quickly and efficiently an algorithm, than the performance of existing CPU does not produce the rate of four times due to the delay of the data of the partition and merge operation proposed a method of improving the rate of speed of about 3.2 times, and the parallel processing of the video card that processes a result, the sequential operation of the process compared to CPU-based who performed the performance gain is about 21 tiems improvement in was confirmed.

Real-Virtual Fusion Hologram Generation System using RGB-Depth Camera (RGB-Depth 카메라를 이용한 현실-가상 융합 홀로그램 생성 시스템)

  • Song, Joongseok;Park, Jungsik;Park, Hanhoon;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.866-876
    • /
    • 2014
  • Generating of digital hologram of video contents with computer graphics(CG) requires natural fusion of 3D information between real and virtual. In this paper, we propose the system which can fuse real-virtual 3D information naturally and fast generate the digital hologram of fused results using multiple-GPUs based computer-generated-hologram(CGH) computing part. The system calculates camera projection matrix of RGB-Depth camera, and estimates the 3D information of virtual object. The 3D information of virtual object from projection matrix and real space are transmitted to Z buffer, which can fuse the 3D information, naturally. The fused result in Z buffer is transmitted to multiple-GPUs based CGH computing part. In this part, the digital hologram of fused result can be calculated fast. In experiment, the 3D information of virtual object from proposed system has the mean relative error(MRE) about 0.5138% in relation to real 3D information. In other words, it has the about 99% high-accuracy. In addition, we verify that proposed system can fast generate the digital hologram of fused result by using multiple GPUs based CGH calculation.