• Title/Summary/Keyword: Parallel Crack

Search Result 143, Processing Time 0.019 seconds

A study on the Surface Cracks in the West Stone Pagoda of Gameunsa Temple Site, Gyeongju, Korea: Examples from the second story stone body and the third story capstone (경주 감은사지 삼층석탑(서탑)에 발달한 표면균열에 대한 연구: 2층 탑신과 3층 옥개석의 사례)

  • Jwa, Yong-Joo;Kim, Jae-Hwan;Park, Sung-Cheol
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.238-244
    • /
    • 2008
  • The west stone pagoda of Gameunsa temple site(National Treasure No. 112) has been seriously damaged by surface weathering, and conservation treatment is needed. In the second story body stone, vertical cracks developed parallel to the main compressional axis. The vertical cracks seem to grow much more with the compression. Chemical and biological weathering along the vertical cracks could have enhanced the crack growth. In the third story capstone, the surface cracks strike toward NE and NW directions, which are intersecting each other. In the eastern and southern parts of the third story capstone, lots of vertical cracks develop along the lines from the axial center to outer rim, whereas horizontal cracks are easily observed at the outer rim of the capstone. On the other hand, a few horizontal cracks develop in the western and northern parts of the third story capstone. This fact indicates that the compression along the vertical axis is not uniform in direction. The west stone pagoda leans toward the east and the south, so it is considered that compression by deviatoric stress prevailed at these directions.

Suitable Conditions of Producing the LVL from Pitch Pine and its Paint Film Durability (리기다소나무 단판적층재(單板積層材)의 제조조건(製造條件)에 따른 물리적성질(物理的性質) 및 도장성능(塗裝性能))

  • Park, Sang-Bum;Kong, Young-To;Jo, Jae-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.3-11
    • /
    • 1989
  • This study was carried out to investigate the physical and mechanical properties. durability of adhesive bond and paint film for the basic data which were required to determine the suitability as a raw material for furniture the laminated veneer lumber (LVL) with pitch pine (Pinus rigida Mill). The results obtained were as follows; 1) The proper pressing time for making the LVL was over 45 second per milimeter of LVL thickness. 2) The bending strength of the LVL was lower than that of the solid wood but the compressive strength of the LVL was similar to that of the solid wood. The strength increased with the decrease of veneer thickness. 3) The impact bending absorbed energy of the LVL was 0 to 0.3 kg.m/$cm^2$ in the direction of parallel to the grain. The energy of the LVL was lower than that of the solid wood (0.68 kg.m/$cm^2$). 4) In warm water soaking and cold-dry tests, delamination of adhered layers surface crack, swelling, and color change were not found when the hot pressing time was over 45 second per milimeter of LVL thickness. As a result of soak under vacuum test shrinkage in the direction of parallel to the grain was about -1.0 percent and. was about 3.0 percent in the direction of the perpendicular to the grain. 6) The film cacks on the LVL's surface after the wet and cold-dry test were not found at all. 7) In the use of the LVL for interior decoration it was considered that the surface of the LVL be overlaid crossly with fancy veneers of birch and paulownia, etc. This cross overlayirg methods have resulted in few cracks on the fancy veneer.

  • PDF

Conceptual Design of the Three Unit Fixed Partial Denture with Glass Fiber Reinforced Hybrid Composites (Glass fiber 강화 복합레진을 사용한 3본 고정성 국소의치의 개념 설계 연구)

  • Na, Kyoung-Hee;Lee, Kyu-Bok;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.3
    • /
    • pp.145-155
    • /
    • 2002
  • The results of the present feasibility study are summarized as follows, 1. The three unit bridge of knitted material and UD fibre reinforcement has both the rigidity and the strength against a vertical occlusal load of 75N. 2. Stress concentration at the junctional area between the bridge and the abutments, i.e. between the pontic and the knitted caps was observed. In the case of the bridge with reinforcement straps, it was partly shown that the concentration problem could be improved by simply increasing the fillet size at the area. Further refining in the surface of the junctional area will be needed to ensure a further improvement in the stress distribution. This will require some trade off in the level of the stress and the available space. A parametric study will help to decide the appropriate size of the fillet. 3. Design refinement is a must to improve the stress distribution and realize the most favourable shape in terms of fabrication. The current straight bar with a constant cross section area can be redesigned to a tapered shape. The curve from the dental arch should also be placed on the pontic design. In accordance with design refinement, the resistance of the bridge frame to other load cases should be evaluated. 4. Although not included in the present feasibility study, it is estimated that bridges of the anterior teeth can be made strong enough with the knitted material without further reinforcement using unidirectional materials. In this regard, a feasibility study on design concepts and stress analysis for 3, 4, 5 unit bridge is suggested. 5. Two types of bridge were analysed in terms of fatigue. The safe life design concept, i.e. fatigue design concept, looks reasonable for the bridge where if cracks should form and propagate there is virtually nothing a dentist to do. The bridge must be designed so that no crack will be initiated during the life span. In the case of crowns, however, if constructed with composite resin with knitted materials, it might be possible to repair them, which in general is impossible for crowns of PFM or of metal. Therefore for composite resin crowns, a damage tolerance design concept can be applied and reasonably higher operational stresses can be allowed. In this case, of course, a periodic inspection program should be established in parallel. 6. Parts of future works in terms of structural viewpoint which need to be addressed are summarized as the following: 1) To develop processing technology to accommodate design concepts; 2) More realistic modelling of the bridge and analysis-geometry and loading condition. Thickness variation in the knitted material, taper in the pontic, design for anterior tooth bridge, the effect of combined loads, etc, will need to be included; 3) To develop appropriate design concepts and design goals for the fibre composite FPD aiming at taking the best advantage of knitted materials, including the damage tolerance design concept; 4) To develop testing method and perform test such as static ultimate load test, fatigue test, repair test, etc, as necessary.