• Title/Summary/Keyword: Parallel Crack

Search Result 142, Processing Time 0.026 seconds

Hybrid damage monitoring of steel plate-girder bridge under train-induced excitation by parallel acceleration-impedance approach

  • Hong, D.S.;Jung, H.J.;Kim, J.T.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.719-743
    • /
    • 2011
  • A hybrid damage monitoring scheme using parallel acceleration-impedance approaches is proposed to detect girder damage and support damage in steel plate-girder bridges which are under ambient train-induced excitations. The hybrid scheme consists of three phases: global and local damage monitoring in parallel manner, damage occurrence alarming and local damage identification, and detailed damage estimation. In the first phase, damage occurrence in a structure is globally monitored by changes in vibration features and, at the same moment, damage occurrence in local critical members is monitored by changes in impedance features. In the second phase, the occurrence of damage is alarmed and the type of damage is locally identified by recognizing patterns of vibration and impedance features. In the final phase, the location and severity of the locally identified damage are estimated by using modal strain energy-based damage index methods. The feasibility of the proposed scheme is evaluated on a steel plate-girder bridge model which was experimentally tested under model train-induced excitations. Acceleration responses and electro-mechanical impedance signatures were measured for several damage scenarios of girder damage and support damage.

Static and Dynamic Fracture Analysis for the Interface Crack of Isotropic-Orthotropic Bimaterial

  • Lee, Kwang-Ho;Arun Shukla;Venkitanarayanan Parameswaran;Vijaya Chalivendra;Hawong, Jae-Sug
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.165-174
    • /
    • 2002
  • In the present study, interfacial cracks between an isotropic and orthotropic material, subjected to static far field tensile loading are analyzed using the technique of photoelasticity. The fracture parameters are extracted from the full-field isochromatic data and the same are compared with that obtained using boundary collocation method. Dynamic photoelasticity combined with high-speed digital photography is employed for capturing the isochromatics in the case of propagating interfacial cracks. The normalized stress intensity factors for static cracks are greate. when ${\alpha}$: 90$^{\circ}$(fibers perpendicular to the interface) than when ${\alpha}$=0$^{\circ}$(fibers parallel to the interface), and those when ${\alpha}$=90$^{\circ}$are similar to ones of isotropic material. The dynamic stress intensity factors for interfacial propagating cracks are greater when ${\alpha}$=0$^{\circ}$ than ${\alpha}$=90$^{\circ}$. For the velocity ranges (0.1 < C/C$\sub$s1/<0.7) observed in this study, the complex dynamic stress intensity factor │K$\sub$D/│increases with crack speed c, however, the rate of increase of │K$\sub$D/│with crack speed is not as drastic as that reported for homogeneous materials.

Parallel Computing Strategies for High-Speed Impact into Ceramic/Metal Plates (세라믹/금속판재의 고속충돌 파괴 유한요소 병렬 해석기법)

  • Moon, Ji-Joong;Kim, Seung-Jo;Lee, Min-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.527-532
    • /
    • 2009
  • In this paper simulations for the impact into ceramics and/or metal materials have been discussed. To model discrete nature for fracture and damage of brittle materials, we implemented cohesive-law fracture model with a node separation algorithm for the tensile failure and Mohr-Coulomb model for the compressive loading. The drawback of this scheme is that it requires a heavy computational time. This is because new nodes are generated continuously whenever a new crack surface is created. In order to reduce the amount of calculation, parallelization with MPI library has been implemented. For the high-speed impact problems, the mesh configuration and contact calculation changes continuously as time step advances and it causes unbalance of computational load of each processor. Dynamic load balancing technique which re-allocates the loading dynamically is used to achieve good parallel performance. Some impact problems have been simulated and the parallel performance and accuracy of the solutions are discussed.

Analysis of the crack propagation rules and regional damage characteristics of rock specimens

  • Li, Yangyang;Xu, Yadong;Zhang, Shichuan;Fan, Jing;Du, Guobin;Su, Lu;Fu, Guangsheng
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.215-226
    • /
    • 2021
  • To study the evolution mechanism of cracks in rocks with multiple defects, rock-like samples with multiple defects, such as strip-shaped through-going cracks and cavity groups, are used, and the crack propagation law and changes in AE (acoustic emission) and strain of cavity groups under different inclination angles are studied. According to the test results, an increase in the cavity group inclination angle can facilitate the initial damage degree of the rock and weaken the crack initiation stress; the initial crack initiation direction is approximately 90°, and the extension angle is approximately 75~90° from the strip-shaped through-going cracks; thus, the relationship between crack development and cavity group initiation strengthens. The specific performance is as follows: when the initiation angle is 30°, the cracks between the cavities in the cavity group develop relatively independently along the parallel direction of the external load; when the angle is 75°, the cracks between the cavities in the cavity group can interpenetrate, and slip can occur along the inclination of the cavity group under the action of the shear mechanism rupture. With the increase in the inclination angle of the cavity group, the AE energy fluctuation frequency at the peak stress increases, and the stress drop is obvious. The larger the cavity group inclination angle is, the more obvious the energy accumulation and the more severe the rock damage; when the cavity group angle is 30° or 75°, the peak strain of the local area below the strip-shaped through-going fracture plane is approximately three times that when the cavity group angle is 45° and 60°, indicating that cracks are easily generated in the local area monitored by the strain gauge at this angle, and the further development of the cracks weakens the strength of the rock, thereby increasing the probability of major engineering quality damage. The research results will have important reference value for hazard prevention in underground engineering projects through rock with natural and artificial defects, including tunnels and air-raid shelters.

Analytical solutions for vibrations of rectangular functionally graded Mindlin plates with vertical cracks

  • Chiung-Shiann Huang;Yun-En Lu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.69-83
    • /
    • 2023
  • Analytical solutions to problems are crucial because they provide high-quality comparison data for assessing the accuracy of numerical solutions. Benchmark analytical solutions for the vibrations of cracked functionally graded material (FGM) plates are not available in the literature because of the high level of complexity of such solutions. On the basis of first-order shear deformation plate theory (FSDT), this study proposes analytical series solutions for the vibrations of FGM rectangular plates with side or internal cracks parallel to an edge of the plates by using Fourier cosine series and the domain decomposition technique. The distributions of FGM properties along the thickness direction are assumed to follow a simple power law. The proposed analytical series solutions are validated by performing comprehensive convergence studies on the vibration frequencies of cracked square plates with various crack lengths and under various boundary condition combinations and by performing comparisons with published results based on various plate theories and the theory of three-dimensional elasticity. The results reveal that the proposed solutions are in excellent agreement with literature results obtained using the Ritz method on the basis of FSDT. The paper also presents tabulations of the first six nondimensional frequencies of cracked rectangular Al/Al2O3 FGM plates with various aspect ratios, thickness-to-width ratios, crack lengths, and FGM power law indices under six boundary condition combinations, the tabulated frequencies can serve as benchmark data for assessing the accuracy of numerical approaches based on FSDT.

Effects of the Whisker Orientation and Sintering Temperature on Mechanical Properties of the Si$_3$N$_4$ based Composites (Si$_3$N$_4$ Whisker의 배열방향과 소결온도가 Si$_3$N$_4$ 복합체의 기계적 성질에 미치는 영향)

  • 김창원;박동수
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.483-489
    • /
    • 1999
  • Gas pressure sintered silicon nitride based composites with 3 wt% $\beta$-Si3N4 whiskers were prepared and change of properties according to the whisker orientation and sintering temperature was studied. The tapes with whiskers were fabricated by two different method ; conventional tape casting and a modified tape casting by using guide pins,. Orientations of the whiskers were controlled by different stacking sequences of the sheets cut from the tape. Samples were fully densified by gas pressure sintering at 2148-2273K. As the sintering temperature increased size of the large elongated grains increased. In case of unidirectional samples sintering shrinkage normal to the whisker alignment direction was larger than that of parallel to the direction and the shrinkage anisotropy increased slightly as sintering temperature increased. As sintering temperature increased the crack length parallel to whisker alignment direction became shorter but that normal to the direction did not depend on sintering temperature. In case of cross-plied samples the anisotropy of mechanical properties disappeared.

  • PDF

Comprehensive Analysis on Wrinkled Patterns Generated by Inflation and Contraction of Spherical Voids

  • Lim, Min-Cheol;Park, Jaeyoon;Jung, Ji-Hoon;Kim, Bongsoo;Kim, Young-Rok;Jeong, Unyong
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.651-658
    • /
    • 2018
  • We comprehensively investigated the wrinkles of a stiff layer covering a spherical void embedded in a rubber matrix after the void experienced inflation or contraction. We developed an easy experimental way to realize the inflation and contraction of the voids. The inflation took place in a void right beneath the surface of the matrix and the contraction happened in a void at the bottom of the rubber matrix. In the inflation, the wrinkle at the center of the deformation was random, and the pattern propagated into rabyrinthine, herringbone, and then oriented parallel lines as the position was away from the center of the inflation to the edge. The cracks were concentric, which were perpendicular to the parallel wrinkled pattern. In the contraction, the wrinkle was simply concentric around the surface of the void without any crack. The cracks were found only near the center of the deformation. The strain distribution in the stiff layer after the inflation and contraction was theoretically analyzed with simulations that were in excellent agreement with the experimental results.

A Study on the Characteristics and the Growth Mechanism of Surface Cracks from the Naksansa Seven-Storied Stone Pagoda, Korea (낙산사 칠층석탑에 발달한 표면균열의 특성과 성장 메커니즘)

  • Park, Sung-chul;Kim, Jae-hwan;Jwa, Yong-joo
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.2
    • /
    • pp.136-149
    • /
    • 2013
  • We studied the characteristics and the growth mechanism of surface cracks from the Naksansa seven-storied stone pagoda(Treasure No. 499). The pagoda is composed of both medium-grained, porphyritic biotite granite and hornblende-biotite granite. Alkali feldspar megacrysts are easily found as phenocrysts in the rocks. Surface cracks intensely developed at the lower part of the stone pagoda, and their directions are of vertical, horizontal, and diagonal. The rocks of the pagoda have intrinsic microcracks which can be defined as rift and grain rock cleavages. Both rock cleavages seems likely to have led to the crack growth and consequently to the mechanical deterioration of the pagoda. The vertical cracks developed parallel to the vertical compressive stress, whereas horizontal ones formed by tensile strength normal to the vertical compression. In addition mineral cleavages and twin planes of alkali feldspar phenocrysts seems to have been closely related to the mechanical breakdown of the rocks in the NE part of the pagoda.

New formulation for vibration analysis of Timoshenko beam with double-sided cracks

  • Ayatollahi, M.R.;Hashemi, R.;Rokhi, H.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.475-490
    • /
    • 2010
  • It is the intention of this study to synthesize the effects of double-edge cracks on the dynamic characteristics of a beam. The stiffness matrix is first determined for a Timoshenko beam containing two same-line edge cracks. The presented model is then developed for elements with two parallel double-sided cracks, considering the interaction between the stress fields of adjacent cracks. Finally, a finite element code is implemented, to examine the influence of depth and location of double cracks, on the natural frequencies of the damaged system.

A Study of Electro-foaming Fusion Wrap for Polyethylene Sewer Pipe (폴리에틸렌 하수관 연결용 전기발포융착 이음관에 관한 연구)

  • Kye, Hyoung-San;Joo, Kyung-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.343-354
    • /
    • 2012
  • A electro-foaming fusion wrap fitting for polyethylene sewer pipe was built and foaming mechanism has been studied. A foaming sheet, supporting sheet and clamping band is assembled into a all-in-one structured electro-foaming fusion wrap fitting. To specify foaming and fusion of electro-foaming fusion wrap for PE sewer pipe, series of fusion tests were performed in various conditions. A parallel plate compression test up to 50 % of inner diameter deflection has been performed to check integrity of fusion quality and it was found that there were no visible signs of crack in wrapped area of fitting. Also air tightness test based on KS M 3511-2 has been performed to evaluate perfectness of wrap fusion quality and we found there were no pressure drop up to 10 times higher value than KS standard regulation.