• Title/Summary/Keyword: Parallel Controller

Search Result 505, Processing Time 0.028 seconds

Nonlinear Friction Compensation using the Information of Integral Controller (적분 제어기 정보를 이용한 비선형 마찰보상)

  • 송진일;최용훈;유지환;권동수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.110-119
    • /
    • 2000
  • This paper presents simple and effective nonlinear friction compensation methods. When the direction of position command reverses, the integrator output of the PID controller does not change the sign of its output instantaneously, due to friction at zero velocity, i.e. stiction resulting tracking errors, that results in continuous push even though the command direction has been changed. To overcome this problem, we attempt to reverse the sign of the integrator output as the sign of velocity changes. The effectiveness of this approach is demonstrated by experiments on a 3-PRPS (Prismatic-Revolute-Prismatic-Shperical joints) in-parallel 6-D.O.F manipulator. The control strategy has been analyzed for stability. Also discussed are disturbance observer and velocity observer approaches for friction compensation.

  • PDF

A Novel Control Scheme Based on the Synchronous Frame for APF

  • Wang, Yifan;Zheng, Hong;Wang, Ruoyin;Zhu, Wen
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1553-1562
    • /
    • 2017
  • For the purpose of enhancing the performance of the shunt active power filter (APF), this paper presents a novel Fast Weighted Compound Control (FWCC) strategy based on the synchronous frame. In this control strategy, the proposed new repetitive controller can work faster and more stably by reducing the internal model cycle and introducing a damping coefficient. In addition, the harmonic detector can be removed to simplify the structure of the APF owing to the improvements. Furthermore, a proportional-integral (PI) controller is added to work in parallel with the repetitive controller by using a weighted ratio. Then, a convergence speed analysis and design algorithm are given in detail. Simulation and experimental results show that the harmonic distortion is reduced from 2.91% to 1.89%. In addition, the content for each of the characteristic harmonic orders has decreased by more than three times.

PDSO tuning of PFC-SAC fault tolerant flight control system

  • Alaimo, Andrea;Esposito, Antonio;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.349-369
    • /
    • 2019
  • In the design of flight control systems there are issues that deserve special consideration and attention such as external perturbations or systems failures. A Simple Adaptive Controller (SAC) that does not require a-priori knowledge of the faults is proposed in this paper with the aim of realizing a fault tolerant flight control system capable of leading the pitch motion of an aircraft. The main condition for obtaining a stable adaptive controller is the passivity of the plant; however, since real systems generally do not satisfy such requirement, a properly defined Parallel Feedforward Compensator (PFC) is used to let the augmented system meet the passivity condition. The design approach used in this paper to synthesize the PFC and to tune the invariant gains of the SAC is the Population Decline Swarm Optimization ($P_DSO$). It is a modification of the Particle Swarm Optimization (PSO) technique that takes into account a decline demographic model to speed up the optimization procedure. Tuning and flight mechanics results are presented to show both the effectiveness of the proposed $P_DSO$ and the fault tolerant capability of the proposed scheme to control the aircraft pitch motion even in presence of elevator failures.

Performance Improvement Strategy for Parallel-operated Virtual Synchronous Generators in Microgrids

  • Zhang, Hui;Zhang, Ruixue;Sun, Kai;Feng, Wei
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.580-590
    • /
    • 2019
  • The concept of virtual synchronous generators (VSGs) is a valuable means for improving the frequency stability of microgrids (MGs). However, a great virtual inertia in a VSG's controller may cause power oscillation, thereby deteriorating system stability. In this study, a small-signal model of an MG with two paralleled VSGs is established, and a control strategy for maintaining a constant inertial time with an increasing active-frequency droop coefficient (m) is proposed on the basis of a root locus analysis. The power oscillation is suppressed by adjusting virtual synchronous reactance, damping coefficient, and load frequency coefficient under the same inertial time constant. In addition, the dynamic load distribution is sensitive to the controller parameters, especially under the parallel operation of VSGs with different capacities. Therefore, an active power increment method is introduced to improve the precision of active power sharing in dynamic response. Simulation and experimental is used to verify the theoretical analysis findings.

Forward kinematic analysis of a 6-DOF parallel manipulator using genetic algorithm (유전 알고리즘을 이용한 6자유도 병렬형 매니퓰레이터의 순기구학 해석)

  • 박민규;이민철;고석조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1624-1627
    • /
    • 1997
  • The 6-DOF parallel manipulator is a closed-kindmatic chain robot manipulator that is capable of providing high structural rigidity and positional accuracy. Because of its advantage, the parallel manipulator have been widely used in many engineering applications such as vehicle/flight driving simulators, rogot maniplators, attachment tool of machining centers, etc. However, the kinematic analysis for the implementation of a real-time controller has some problem because of the lack of an efficient lagorithm for solving its highly nonliner forward kinematic equation, which provides the translational and orientational attitudes of the moveable upper platform from the lenght of manipulator linkages. Generally, Newton-Raphson method has been widely sued to solve the forward kinematic problem but the effectiveness of this methodology depend on how to set initial values. This paper proposes a hybrid method using genetic algorithm(GA) and Newton-Raphson method to solve forward kinematics. That is, the initial values of forward kinematics solution are determined by adopting genetic algorithm which can search grobally optimal solutions. Since determining this values, the determined values are used in Newton-Raphson method for real time calcuation.

  • PDF

Precise Position Vontrol of an In-Parallel Actuated Manipulator Using Disturbance and Velocity Observer (병렬 구동 매니퓰레이터의 외란 및 속도 추정을 이용한 정밀 위치 제어)

  • 최용훈;심재홍;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1796-1799
    • /
    • 1997
  • This thersis presents precise position control emthods of a 3-PRPS in-parallel manipulator for industrial applications such as assembly of highly integrated semiconductors and microsurgery. Since real-time ontrol is one of the most important issues required for industrial application, the experimental hardware is set up with a VME based DSP controller. In the 3-PRPS parallel mainpulator, structurally existing frictiion at three horizontal links considerably degrades the precise position control. In order to compensate the friction of the horizontal links in the joint space, a disturbance compensation usign disturbance and velocity observers has been proposed and investigated. We analyzed the decision method of eigenvalues of the disturbance observer and the effects of the control resulted form tehsystem model errors. Through a series of simulations and experiments, we see that the methods is capable of compensating variations of the robot parameters such as inertia and damping as well as the joint friction. Experiments show that the disturbance compensation method usign disturbance and velocity observer is very effective to compensate the friction. Compared with conventional PID position control, it decreased position errors ina circular motion by approximately 70%.

  • PDF

Redundant Operation of a Parallel AC to DC Converter via a Serial Communication Bus

  • Kanthaphayao, Yutthana;Kamnarn, Uthen;Chunkag, Viboon
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.533-541
    • /
    • 2011
  • The redundant operation of a parallel AC to DC converter via a serial communication bus is presented. The proposed system consists of three isolated CUK power factor correction modules. The controller for each converter is a dsPIC30F6010 microcontroller while a RS485 communication bus and the clock signal are used for synchronizing the data communication. The control strategy of the redundant operation relies on the communication of information among each of the modules, which communicate via a RS485 serial bus. This information is received from the communication checks of the converter module connected to the system to share the load current. Performance evaluations were conducted through experimentation on a three-module parallel-connected prototype, with a 578W load and a -48V dc output voltage. The proposed system has achieved the following: the current sharing is quite good, both the transient response and the steady state. The converter modules can perform the current sharing immediately, when a fault is found in another converter module. In addition, the transient response occurs in the system, and the output voltages are at their minimum overshoot and undershoot. Finally, the proposed system has a relatively simple implementation for the redundant operation.

A Parallel Processing System for Visual Media Applications (시각매체를 위한 병렬처리 시스템)

  • Lee, Hyung;Pakr, Jong-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1A
    • /
    • pp.80-88
    • /
    • 2002
  • Visual media(image, graphic, and video) processing poses challenge from several perpectives, specifically from the point of view of real-time implementation and scalability. There have been several approaches to obtain speedups to meet the computing demands in multimedia processing ranging from media processors to special purpose implementations. A variety of parallel processing strategies are adopted in these implementations in order to achieve the required speedups. We have investigated a parallel processing system for improving the processing speed o f visual media related applications. The parallel processing system we proposed is similar to a pipelined memory stystem(MAMS). The multi-access memory system is made up of m memory modules and a memory controller to perform parallel memory access with a variety of combinations of 1${\times}$pq, pq${\times}$1, and p${\times}$q subarray, which improves both cost and complexity of control. Facial recognition, Phong shading, and automatic segmentation of moving object in image sequences are some that have been applied to the parallel processing system and resulted in faithful processing speed. This paper describes the parallel processing systems for the speedup and its utilization to three time-consuming applications.

Design of Lightweight Artificial Intelligence System for Multimodal Signal Processing (멀티모달 신호처리를 위한 경량 인공지능 시스템 설계)

  • Kim, Byung-Soo;Lee, Jea-Hack;Hwang, Tae-Ho;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1037-1042
    • /
    • 2018
  • The neuromorphic technology has been researched for decades, which learns and processes the information by imitating the human brain. The hardware implementations of neuromorphic systems are configured with highly parallel processing structures and a number of simple computational units. It can achieve high processing speed, low power consumption, and low hardware complexity. Recently, the interests of the neuromorphic technology for low power and small embedded systems have been increasing rapidly. To implement low-complexity hardware, it is necessary to reduce input data dimension without accuracy loss. This paper proposed a low-complexity artificial intelligent engine which consists of parallel neuron engines and a feature extractor. A artificial intelligent engine has a number of neuron engines and its controller to process multimodal sensor data. We verified the performance of the proposed neuron engine including the designed artificial intelligent engines, the feature extractor, and a Micro Controller Unit(MCU).

Energy Absorbing Control Characteristic of Al Thin-walled Tubes (AL 박육부재의 에너지 흡수 제어특성)

  • Yang, Yong-Jun;Yang, In-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.86-91
    • /
    • 2008
  • The structural members must be designed to control characteristics of energy absorption for protecting passengers in a car accident. Study on collapse characteristics of structural member is currently conducted in parallel with other studies on effective energy absorption capacity of structural members with diverse cross-sectional shapes and various materials. This study concerns the crashworthiness of the widely used vehicle structural members, square thin-walled tubes, which are excellent in the point of the energy absorption capacity. The absorbed energy, mean collapse load and deformation mode were analyzed for side member which absorbs most of the collision energy. To predict and control the energy absorption, controller is designed in consideration of its influence on height, thickness and width ration in this study. The absorbed energy and mean collapse load of square tubes were increased by $15{\sim}20%$ in using the controller, and energy absorbing capability of the specimen was slightly changed by change of the high controller's height.