• Title/Summary/Keyword: Parallel Controller

Search Result 505, Processing Time 0.026 seconds

Fuzzy PD plus I Controller of a CSTR for Temperature Control

  • Lee, Joo-Yeon;So, Hye-Rim;Lee, Yun-Hyung;Oh, Sea-June;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.563-569
    • /
    • 2015
  • A chemical reaction occurring in CSTR (Continuous Stirred Tank Reactor) is significantly affected by the concentration, temperature, pressure, and reacting time of materials, and thus it has strong nonlinear and time-varying characteristics. Also, when an existing linear PID controller with fixed gain is used, the performance could deteriorate or could be unstable if the system parameters change due to the change in the operating point of CSTR. In this study, a technique for the design of a fuzzy PD plus I controller was proposed for the temperature control of a CSTR process. In the fuzzy PD plus I controller, a linear integral controller was added to a fuzzy PD controller in parallel, and the steady-state performance could be improved based on this. For the fuzzy membership function, a Gaussian type was used; for the fuzzy inference, the Max-Min method of Mamdani was used; and for the defuzzification, the center of gravity method was used. In addition, the saturation state of the actuator was also considered during controller design. The validity of the proposed method was examined by comparing the set-point tracking performance and the robustness to the parameter change with those of an adaptive controller and a nonlinear proportional-integral-differential controller.

Droop Control for Parallel Inverers in Islanded Microgrid Considering Unbalanced Low-Voltage Line Impedances (마이크로그리드 독립 운전 모드시 저전압 불평형 선로 임피던스를 고려한 드룹 방식의 인버터 병렬 운전 제어 연구)

  • Lim, Kyung-Bae;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.387-396
    • /
    • 2013
  • This paper investigates the droop control of parallel inverters for an islanded mode of microgrid. Frequency and voltage droop control is one of power control and load demand sharing methods. However, although the active power is properly shared, the reactive power sharing is inaccurate with conventional method due to the unequal line impedances and the power coupling of active - reactive power. In order to solve this problem, an improved droop method with virtual inductor concept and a voltage and current controller properly designed have been considered and analyzed through the PSiM simulation. The performance of improved droop method is analyzed in not only low-voltage line but also medium voltage line.

Sliding Mode Control with Fuzzy Adaptive Perturbation Compensator for 6-DOF Parallel Manipulator

  • Park, Min-Kyu;Lee, Min-Cheol;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.535-549
    • /
    • 2004
  • This paper proposes a sliding mode controller with fuzzy adaptive perturbation compensator(FAPC) to get a good control performance and reduce the chatter, The proposed algorithm can reduce the chattering because the proposed fuzzy adaptive perturbation compensator compensates the perturbation terms. The compensator computes the control input for compensating unmodeled dynamic terms and disturbance by using the observer-based fuzzy adaptive network(FAN) The weighting parameters of the compensate. are updated by on-line adaptive scheme in order to minimize the estimation error and the estimation velocity error of each actuator. Therefore, the combination of sliding mode control and fuzzy adaptive network gives the robust and intelligent routine to get a good control performance. To evaluate the control performance of the proposed approach, tracking control is experimentally carried out for the hydraulic motion platform which consists of a 6-DOF parallel manipulator.

Design and Tracking Control of 4-DOF Motion Platform for Bicycle Simulator (자전거 시뮬레이터용 4자유도 운동판의 설계 및 추적 제어)

  • 성지원;신재철;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.235-240
    • /
    • 2001
  • A four degrees of freedom (dof) motion platform for bicycle simulator is developed. The motion platform, capable of the vertical linear and three angular motions, is designed based on analysis of the typical motion characteristics revealed by the existing six dof bicycle simulator. The platform essentially consists of two parts: the three dof parallel manipulator, consisting of a moving platform, a fixed base and three actuators, and the turntable to generate the yaw motion. The nonlinear kinematics and dynamics of the three dof parallel manipulator with multiple closed loop chains are analyzed for tracking control of the motion platform. The tracking performances of the three control schemes are experimentally compared: the computed torque method (CTM), the sliding mode control (SMC) and the PD control. The CTM and SMC, incorporated with the system dynamics model, are found to be equally better in performance than the PD controller, irrespective of the presence of external disturbance.

  • PDF

Variable step size simulation using transmission line element (전달관로 요소를 이용한 가변스텝 시뮬레이션)

  • Hwang, Un-Kyoo;Cho, Seung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.682-687
    • /
    • 2000
  • In this paper, the simulation methods using transmission lines are studied and realized, which are necessary in design and analysis of hydraulic control systems. The basic idea of this method is that system components are separated by transmission line element for simulation. The PI-controller can keep inductance level as low as desired. It can also handle nonlinearities and discontinuities without flag signal when restarting integration. Parallel hydraulic circuits are simulated using parallel processing algorithm. To shoe that using variable timestep size in each subsystem, simulation time can be reduced. Performance of the simulation results is compared with that of Runge Kutta method.

  • PDF

FUZZY TORQUE CONTROL STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLES

  • PU J.-H.;YIN C.-L.;ZHANG J.-W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.529-536
    • /
    • 2005
  • This paper presents a novel design of a fuzzy control strategy (FCS) based on torque distribution for parallel hybrid electric vehicles (HEVs). An empirical load-regulating vehicle operation strategy is developed on the basis of analysis of the components efficiency map data and the overall energy conversion efficiency. The aim of the strategy is to optimize the fuel economy and balance the battery state-of-charge (SOC), while satisfying the vehicle performance and drivability requirements. In order to accomplish this strategy, a fuzzy inference engine with a rule-base extracted from the empirical strategy is designed, which works as the kernel of a fuzzy torque distribution controller to determine the optimal distribution of the driver torque request between the engine and the motor. Simulation results reveal that compared with the conventional strategy which uses precise threshold parameters the proposed FCS improves fuel economy as well as maintains better battery SOC within its operation range.

Position Control of Servo Motor using Hybrid Controller (하이브리드 제어기를 이용한 서보 전동기의 위치제어)

  • Kwon, Se-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.3
    • /
    • pp.186-192
    • /
    • 2009
  • PID controllers are simple in structure and easy for implementation. However, they may produce large overshoots and over-oscillatory responses. Combining PID control with other control techniques often results in advanced hybrid schemes that are able to improve pure PID controllers. This paper proposes hybrid controller for position control system of servo motor. The proposed controller is composed of a subcontroller and a parallel PID controller. The subcontroller improves the transient system performance while the PID controller is mainly responsible for the steady-state system performance. A very promising advantage of this hybrid scheme, in terms of controller synthesis, is that the subcontrollers and controller components can be designed separately. Systematic design methods for various controller components are developed. The proposed hybrid scheme is applied to a DC motor position servo system. The effectiveness of the proposed controller is verified through the computer simulation results.

  • PDF

Intelligent Digital Redesign of a Fuzzy-Model-Based Controllers for Nonlinear Systems with Uncertainties (불확실성을 갖는 비선형 시스템을 위한 퍼지 모델 기반 제어기의 지능형 디지털 재설계)

  • Jang Kwon-Kyu;Kwon Oh-Shin;Joo Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.227-232
    • /
    • 2006
  • In this paper, we propose a systematic method for intelligent digital redesign of a fuzzy-model-based controller for continuous-time nonlinear system which may also contain system uncertainties. The continuous-time uncertain TS fuzzy model is first contructed to represent the uncertain nonlinear system. A parallel distributed compensation(PDC) technique is then used to design a fuzzy-model-based controller for both stabilization. The designed continuous-time controller is then converted to an equivalent discrete-time controller by using a globally intelligent digital redesign method. This new technique is designed by a global matching of state variables between analog control system and digital control system. This new design technique provides a systematic and effective framework for integration of the fuzzy-model-based control theory and the advanced digital redesign technique for nonlinear systems with uncertainties. Finally, Chaotic Lorenz system is used as an illustrative example to show the effectiveness and the feasibility of the developed design method.

A Design of Industrial Controller with Multi-function and Multi-purpose (다기능 다목적을 갖는 산업용 제어기 설계)

  • 정보환;남진문
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.4
    • /
    • pp.481-490
    • /
    • 2001
  • In this paper, we propose the industrial controller with multi-function/multi-purpose in order to cope with a small-amount and large-items environments. The controller designed consists of Main Unit including all of information and Display Unit. The software in the Main Unit is composed of tasks and device drivers and each task is being processed in parallel by operating system supporting multitasking. The controller is structured in three levels to promptly address the control algorithm’s modification, MMI’s change, and so on. We can produce a controller without changing the first layer(hardware) and the second layer(firmware). We only modify the third layer(control algorithm) depending on control targets.

  • PDF

DESIGN CONCEPT FOR SINGLE CHIP MOSAIC CCD CONTROLLER

  • HAN WONYONG;JIN Ho;WALKER DAVID D.;CLAYTON MARTIN
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.389-390
    • /
    • 1996
  • The CCDs are widely used in astronomical observations either in direct imaging use or spectroscopic mode. However, the areas of available sensors are too small for large imaging format. One possibility to obtain large detection area is to assemble mosaics of CCD, and drive them simultaneously. Parallel driving of many CCDs together rules out the possibility of individual tuning; however, such optimisation is very important, when the ultimate low light level performance is required, particularly for new, or mixed devices. In this work, a new concept is explored for an entirely novel approach, where the drive waveforms are multiplexed and interleaved. This simultaneously reduces the number of leadout connections and permits individual optimisation efficiently. The digital controller can be designed within a single EPLD (Erasable Programmable Logic Device) chip produced by a CAD software package, where most of the digital controller circuits are integrated. This method can minimise the component. count., and improve the system efficiency greatly, based on earlier works by Han et a1. (1996, 1994). The system software has an open architecture to permit convenient modification by the user, to fit their specific purposes. Some variable system control parameters can be selected by a user with a wider range of choice. The digital controller design concept allows great flexibility of system parameters by the software, specifically for the compatibility to deal with any number of mixed CCDs, and in any format, within the practical limit.

  • PDF