• Title/Summary/Keyword: Parallel Controller

Search Result 505, Processing Time 0.026 seconds

Output Phase Synchronization Method of Inverter for Parallel Operation of Uninterruptible Power System (무정전전원장치 병렬운전을 위한 인버터의 출력 위상 동기화 방법)

  • Kim, Heui-Joo;Park, Jong-Myeon;Oh, Se-Hyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.235-241
    • /
    • 2020
  • In this paper, we propose the bus/bypass synchronization phase lock loop (B-Sync PLL) method using each phase voltage controller of a parallel UPS inverter. The B-Sync PLL included in each phase voltage control system of parallel UPS inverters has the transient response and the phase synchronization error at grid normal or blackout. The validity of this method is verified by simulation and experiment. As a result, the parallel UPS inverters using the proposed method confirmed that the output phase was continuously synchronized when a grid blackout, improving the transient response characteristics for stable load power supply and equal load sharing.

The Parallel Operation Control Technique of UPS System (UPS시스템의 병렬운전 제어기법)

  • Lee Sang-Hoon;Lee Woo-Cheol;Kim Kyong-Hwan;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.158-162
    • /
    • 2002
  • The parallel operation system of multiple UPS(Uninterruptible Power Supply) is used to increase power capacity of the system or to secure higher reliability at critical loads. In the parallel operation of the two UPSs, the load sharing control to maintain the current balance between them is a matter of consequence. In this paper, a highly precise load sharing controller is proposed and implemented for the parallel operation system of two UPSs. After that, a good performance of the proposed method is verified by simulation in the parallel operation system with two UPSs.

  • PDF

A Study on the Parallel Operation Control Technique of On-line UPS System (무정전전원장치의 병렬운전 제어기법에 관한 연구)

  • 곽철훈;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.585-592
    • /
    • 2003
  • The parallel operation system of UPS is used to increase reliability of power source at critical load. But parallel UPS system has a few defects, impedance is different from each other and circulating current occurs between UPSs, due to line impedance and parameter variation, though controlled by the same synchronization signal. According to such characteristic of parallel UPS, balanced load-sharing control is the most important technique in parallel UPS operation. In this paper, a novel power deviation compensation algorithm is proposed. it is composed of voltage controller to compensate power deviation that be calculated by using active and reactive current deviation between Inverters on synchronous d-q reference frame.

Verification of an Autonomous Decentralized UPS System with Fast Transient Response Using a FPGA-Based Hardware Controller

  • Yokoyama, Tomoki;Doi, Nobuaki;Ishioka, Toshiya
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.507-515
    • /
    • 2009
  • This paper proposes an autonomous decentralized control for a parallel connected uninterruptible power supply (UPS) system based on a fast power detection method using a FPGA based hardware controller for a single phase system. Each UPS unit detects only its output voltage and current without communications signal exchange and a quasi dq transformation method is applied to detect the phase and amplitude of the output voltage and the output current for the single phase system. Fast power detection can be achieved based on a quasi dq transformation, which results in a realization of very fast transient response under rapid load change. In the proposed method, the entire control system is implemented in one FPGA chip. Complicated calculations are assigned to hardware calculation logic, and the parallel processing circuit makes it possible to realize minimized calculation time. Also, an Nios II CPU core is implemented in the same FPGA chip, and the software can be applied for non-time critical calculations. Applying this control system, an autonomous decentralized UPS system with very fast transient response is realized. Feasibility and stable operation are confirmed by means of an experimental setup with three UPSs connected in parallel. Also, rapid load change is applied and excellent performance of the system is confirmed in terms of transient response and stability.

Digital State Feedback Current Control using the Pole Placement Technique

  • Bae, Hyun-Su;Yang, Jeong-Hwan;Lee, Jae-Ho;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.213-221
    • /
    • 2007
  • A digital state feedback control method for the current mode control of DC-DC converters is proposed in this paper. This approach can precisely achieve interleaved current sharing among the converter modules. As the controller design and system analysis are performed in the time domain, the proposed method can easily satisfy the required converter specification by using the pole placement technique. The digital state feedback controller in the continuous and discrete time domain is derived for the robust tracking control. For the verification of the proposed control scheme, a parallel module bi-directional converter in a prototype 42V/14V hybrid automotive power system, which is a design example in the continuous time domain, and a parallel module buck converter, which is a design example in the discrete time domain, are implemented using a TMS320F2812 digital signal processor (DSP).

Load-Sharing Algorithm using Digital Parallel Communication (디지털 병렬 통신을 이용한 부하분담 알고리즘)

  • Park, Seong-Mi;Kim, Chun-Sung;Lee, Sang-Hyeok;Lee, Sang-Hun;Park, Sung-Jun;Lee, Bae-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.50-57
    • /
    • 2011
  • In this paper, we proposes a new load-sharing algorithm with a ATmega2560 based digital communication. Proposed algorithm is different from conventional analog method. The high speed communication digital control is performed. To apply the digital communication and real-time control for time-sharing token bus method, we implemented high efficient load-sharing and redundancy. Also this system make down the price by auto ID algorithm and system response is improved by controller's voltage and current integral value sharing. In parallel system prototype, each module have controller and performed load-sharing according to master module integral value. In this paper, we verify the validity of proposed algorithm using PSIM program and prototype.

An improved adaptive control technique for the Voltage Bus Conditioner with parallel loads in the DC Power Distribution System (병렬 부하를 갖는 DC배전 시스템을 위한 Voltage Bus Conditioner의 향상된 적응제어)

  • Lee, Byung-Hun;Chang, Han-sol;La, Jae-Du;Kim, Young-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.249-250
    • /
    • 2011
  • In DC Power Distribution System(DC PDS), a bus voltage instability is occurred by multiple parallel loads. The Voltage Bus Conditioner(VBC) is used to mitigate the DC bus voltage transient. An adaptive controller of the VBC is designed and the simulation result of the controller is verified by PSIM simulation package for the proposed control technique.

  • PDF

Generating Chaos from Discrete TS Fuzzy System

  • Zhong Li;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.111-115
    • /
    • 2001
  • In this paper, a simple and systematic control design method is proposed for a discrete-time Takagi-Sugeno(TS) fuzzy system, which employs the parallel distributed compensation(PDC) to determine the structure of a fuzzy controller so as to mark all the Lyaunov exponents of the controlled TS fuzzy system strictly positive. This approach is proven to be mathematically rigorous for anticontrol of chaos for a TS fuzzy system in the sense that any given discrete-time TS fuzzy system can be made chaotic by the designed PDC controller along with the-operation. A numerical example is included to visualize the anticontrol effect.

  • PDF

Simple Adaptive Position Control of a Hydraulic Cylinder-load System Driven by a Proportional Directional Control Valve (비례 방향제어 밸브에 의하여 구동되는 유압실린더-부하계의 단순 적응 위치제어)

  • Cho, Seung-Ho;Lee, Min-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.936-941
    • /
    • 2011
  • This paper deals with the issue of motion control of a single rod cylinder-load system using simple adaptive control (SAC) method. Prior to controller design, the experiment of open-loop response has been performed. Based on it, design parameters of transfer function are obtained and used for controller design. The effect of parallel feedforward compensator has been investigated by computer simulation, suppressing the oscillatory motion. Through experiments it is conformed that the SAC method gives good tracking performance compared to the PD control method.

Disturbance Observer Design for a Non-minimum Phase System That Is Stabilizable via PID Control (PID 제어기로 안정화 가능한 비최소 위상 시스템에 대한 외란 관측기 설계)

  • Son, Young-Ik;Kim, Sung-Jong;Jeong, Goo-Jong;Shim, Hyung-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1612-1617
    • /
    • 2008
  • Since most disturbance observer (DOB) approaches have been limited to minimum-phase systems (or systems having no zero dynamics), we propose a new DOB structure that can be applied to non-minimum phase systems. The new structure features an additional system, which is called as V-filter, whose role is to yield a minimum phase system when connected with the plant in parallel. In order to design the V-filter systematically we first consider a class of linear systems that can be stabilized via PID controller. By inverting the controller's transfer function, we can simply construct the filter. A convenient way of designing V-filter is presented by using an iterative linear matrix inequality (LMI) algorithm. With an illustrative example the simulation result shows that substantial improvement in the performance has been achieved compared with the control system without the DOB.