• 제목/요약/키워드: Parallel Computing

검색결과 807건 처리시간 0.031초

Parallel Computing on Intensity Offset Tracking Using Synthetic Aperture Radar for Retrieval of Glacier Velocity

  • Hong, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제35권1호
    • /
    • pp.29-37
    • /
    • 2019
  • Synthetic Aperture Radar (SAR) observations are powerful tools to monitor surface's displacement very accurately, induced by earthquake, volcano, ground subsidence, glacier movement, etc. Especially, radar interferometry (InSAR) which utilizes phase information related to distance from sensor to target, can generate displacement map in line-of-sight direction with accuracy of a few cm or mm. Due to decorrelation effect, however, degradation of coherence in the InSAR application often prohibit from construction of differential interferogram. Offset tracking method is an alternative approach to make a two-dimensional displacement map using intensity information instead of the phase. However, there is limitation in that the offset tracking requires very intensive computation power and time. In this paper, efficiency of parallel computing has been investigated using high performance computer for estimation of glacier velocity. Two TanDEM-X SAR observations which were acquired on September 15, 2013 and September 26, 2013 over the Narsap Sermia in Southwestern Greenland were collected. Atotal of 56 of 2.4 GHz Intel Xeon processors(28 physical processors with hyperthreading) by operating with linux environment were utilized. The Gamma software was used for application of offset tracking by adjustment of the number of processors for the OpenMP parallel computing. The processing times of the offset tracking at the 256 by 256 pixels of window patch size at single and 56 cores are; 26,344 sec and 2,055 sec, respectively. It is impressive that the processing time could be reduced significantly about thirteen times (12.81) at the 56 cores usage. However, the parallel computing using all the processors prevent other background operations or functions. Except the offset tracking processing, optimum number of processors need to be evaluated for computing efficiency.

3차원 대형구조물의 동적해석을 위한 병렬 알고리즘 개발 (Development of Parallel Algorithm for Dynamic Analysis of Three-Dimensional Large-Scale Structures)

  • 김국규;성창원;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.307-314
    • /
    • 2000
  • A parallel condensation algorithm for efficient dynamic analysis of three-dimensional large-scale structures is presented. The algorithm is developed for a user-friendly and cost effective high-performance computing system on a collection of Pentium processors connected via a 100 Mb/s Ethernet LAN. To harness the parallelism in the computing system effectively, a large-scale structure is partitioned into a number of substructures equal to the number of computers in the computing system Then, for reduction in the size of an eigenvalue problem the computations required for static condensation of each substructure is processed concurrently on each slave computer. The performance of th proposed parallel algorithm is demonstrated by applying to dynamic analysis of a three dimensional structure. The results show that how the parallel algorithm facilitates the efficient use of a small number of low-cost personal computers for dynamic analysis of large-scale structures.

  • PDF

병렬처리를 이용한 화력발전소의 실시간 시뮬레이션 (Real time simulation using multiple DSPs for fossil power plants)

  • 박희준;김병국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.480-483
    • /
    • 1997
  • A fossil power plant can be modeled by a lot of algebraic equations and differential equations. When we simulate a large, complicated fossil power plant by a computer such as workstation or PC, it takes much time until overall equations are completely calculated. Therefore, new processing systems which have high computing speed is ultimately needed to develope real-time simulators. Vital points of real-time simulators are accuracy, computing speed, and deadline observing. In this paper, we present a enhanced strategy in which we can provide powerful computing power by parallel processing of DSP processors with communication links. We designed general purpose DSP modules, and a VME interface module. Because the DSP module is designed for general purpose, we can easily expand the parallel system by just connecting new DSP modules to the system. Additionally we propose methods about downloading programs, initial data to each DSP module via VME bus, DPRAM and processing sequences about computing and updating values between DSP modules and CPU30 board when the simulator is working.

  • PDF

Optimal Design of a Direct-Driven PM Wind Generator Aimed at Maximum AEP using Coupled FEA and Parallel Computing GA

  • Jung, Ho-Chang;Lee, Cheol-Gyun;Hahn, Sung-Chin;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권4호
    • /
    • pp.552-558
    • /
    • 2008
  • Optimal design of the direct-driven Permanent Magnet(PM) wind generator, combined with F.E.A(Finite Element Analysis) and Genetic Algorithm(GA), has been performed to maximize the Annual Energy Production(AEP) over the entire wind speed characterized by the statistical model of wind speed distribution. Particularly, the proposed parallel computing via internet web service has contributed to reducing excessive computing times for optimization.

모바일 작업을 위한 수정된 GOMS-model에 대한 연구 (Modified GOMS-Model for Mobile Computing)

  • 이석재;명노해
    • 산업경영시스템학회지
    • /
    • 제32권2호
    • /
    • pp.85-93
    • /
    • 2009
  • GOMS model is a cognitive modeling method of human performance based on Goal, Operators, Methods, Selection rules. GOMS model was originally designed for desktop environment so that it is difficult for GOMS model to be implemented into the mobile environment. In addition, GOMS model would be inaccurate because the original GOMS model was based on serial processing, excluding one of most important human information processing characteristics, parallel processing. Therefore this study was designed to propose a modified GOMS model including mobile computing and parallel processing. In order to encompass mobile environment, an operator of 'look for' was divided into 'visual move to' and 'recognize' whereas 'point to' and 'click' were combined into 'tab.' The results showed that newly introduced operators were necessary to estimate more accurate mobile computing behaviors. In conclusion, modified-GOMS model could predict human performance more accurately than the original GOMS model in the mobile computing environment.

Fast Circuit Simulation Based on Parallel-Distributed LIM using Cloud Computing System

  • Inoue, Yuta;Sekine, Tadatoshi;Hasegawa, Takahiro;Asai, Hideki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제10권1호
    • /
    • pp.49-54
    • /
    • 2010
  • This paper describes a fast circuit simulation technique using the latency insertion method (LIM) with a parallel and distributed leapfrog algorithm. The numerical simulation results on the PC cluster system that uses the cloud computing system are shown. As a result, it is confirmed that our method is very useful and practical.

Grid-Enabled Parallel Simulation Based on Parallel Equation Formulation

  • Andjelkovic, Bojan;Litovski, Vanco B.;Zerbe, Volker
    • ETRI Journal
    • /
    • 제32권4호
    • /
    • pp.555-565
    • /
    • 2010
  • Parallel simulation is an efficient way to cope with long runtimes and high computational requirements in simulations of modern complex integrated electronic circuits and systems. This paper presents an algorithm for parallel simulation based on parallelization in equation formulation and simultaneous calculation of matrix contributions for nonlinear analog elements. In addition, the paper describes the development of a grid interface for a parallel simulator that enables a designer to perform simulations on distant computer clusters. Performances of the developed parallel simulation algorithm are evaluated by simulation of a microelectromechanical system.

병렬컴퓨팅 환경에서의 대용량 퍼지 추론 (Fuzzy Inference of Large Volumes in Parallel Computing Environments)

  • 김진일;이상구
    • 한국지능시스템학회논문지
    • /
    • 제10권4호
    • /
    • pp.293-298
    • /
    • 2000
  • 대단히 많은 수의 퍼지 규칙을 갖거나 대용량의 퍼지 데이터를 갖는 퍼지 전문가 시스템 또는 퍼지 데이터베이스 시스템에서는 많은 추론 시간을 요구한다. 따라서 이러한 추론 시간을 줄이기 위해서는 고성능 병렬 퍼지 컴퓨팅 환경을 필요로 한다. 본 온문에서는 병렬 컴퓨팅 환경에서 병렬 퍼지 추론 기법을 제안한다. 여기에서 퍼지 규칙은 분산되어 있고 동시에 수행된다. ONE_TO_ALL 알고리즘은 모든 노드에 퍼지 입력 백터를 broadcasting하는데 사용한다. MIN/MAX 연산의 결과는 ALL_TO_ONE 알고리즘에 의해 출력 프로세서로 전송된다. 퍼지 규칙 또는 데이터의 병렬 처리로 인해, 병렬 추론 알고리즘은 효과적인 병렬성의 추출 및 속도 향상을 가져온다.

  • PDF

외연 Lagrangian 유한요소법 기반의 대규모 유한요소 모델 병렬처리 (Parallel Computing of Large Scale FE Model based on Explicit Lagrangian FEM)

  • 백승훈;김승조;이민형
    • 한국항공우주학회지
    • /
    • 제34권8호
    • /
    • pp.33-40
    • /
    • 2006
  • 비선형 외연 유한요소법에서 유한요소 병렬 처리 방안을 기술하고 코드에 구현하였다. 성능테스트 장비로 자체 구축한 520 개의 CPU를 갖는 리눅스 클러스터 슈퍼컴퓨터를 사용하였다. 대규모 모델 테스트 결과 256 개의 CPU 까지도 거의 이상적인 속도 증가를 보였다. 유한요소 계산시간 대비 통신시간 계산이 전체 성능에 미치는 영향도 검토하였다. 사용 프로세서가 증가할수록 상용코드의 병렬 성능 대비 더 좋은 성능을 보이는 것으로 나타났다.

High Performance Computing: Infrastructure, Application, and Operation

  • Park, Byung-Hoon;Kim, Youngjae;Kim, Byoung-Do;Hong, Taeyoung;Kim, Sungjun;Lee, John K.
    • Journal of Computing Science and Engineering
    • /
    • 제6권4호
    • /
    • pp.280-286
    • /
    • 2012
  • The last decades have witnessed an increasingly indispensible role of high performance computing (HPC) in science, business and financial sectors, as well as military and national security areas. To introduce key aspects of HPC to a broader community, an HPC session was organized for the first time ever for the United States and Korea Conference (UKC) during 2012. This paper summarizes four invited talks that each covers scientific HPC applications, large-scale parallel file systems, administration/maintenance of supercomputers, and green technology towards building power efficient supercomputers of the next generation.