• Title/Summary/Keyword: Parallel AC to DC Converter

Search Result 69, Processing Time 0.02 seconds

The Parallel Operation of Each other three phase AC/DC Converter using DC Current Droop Control for Multi-parallel DC Distribution System (다병렬 직류배전 시스템의 DC전류 드룹 제어를 이용한 서로 다른 3상 AC/DC컨버터의 병렬운전기법)

  • Lee, Hee-Jun;Hong, Jin-Seok;Hyun, Seung-Wook;Kang, Jin-Wook;Kim, Han-Soo;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.6
    • /
    • pp.42-48
    • /
    • 2015
  • DC distribution system is difficult to compose the single-system because of the capacity restriction of power semiconductors. Therefore, DC Distribution system needs parallel operation of AC/DC converters for increase to system capacity. However, this system generates the circulating current. This paper is reducing the circulating current and safely sharing the load using the proposed DC current droop control method when each other 3-phase AC/DC converter connected. This system confirms through the simulation and experiment. Also, when each other converter of parallel operate. it is compared the response characteristics

Novel Modular 3-phase AC-DC Flyback Converter for Telecommunication

  • Park, Ju-Yeop;Lee, Jong-Pil;Kim, Taek-Yong;Song, Joong-Ho;Ick Choy
    • Journal of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.212-219
    • /
    • 2002
  • A novel mode of parallel operation of a modular 3-phase AC-DC flyback converter for power factor correction along with tight regulation was recently analyzed and presented. The advantage of the proposed converter does not require expensive high voltage and high current devices that are normally needed in popular boost type 3-phase converter. In this paper tile detailed small signal analysis of the modular 3-phase AC-DC flyback converter is provided for control purpose and also experimental results are included to confirm the validity of the analysis.

Novel Adaptive Virtual Impedance-based Droop Control for Parallel Operation of AC/DC Converter for DC Distribution (새로운 가상 임피던스 선정기법 기반의 적응 드룹을 이용한 직류배전용 AC/DC 컨버터의 병렬운전)

  • Lee, Yoon-Seong;Kang, Kyung-Min;Choi, Bong-Yeon;Kim, Mi Na;Lee, Hoon;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.328-329
    • /
    • 2020
  • The AC/DC converter, which connects the AC grid to the DC grid in the microgrid, is a critical component in power sharing and stable operation. Sometimes the AC/DC converters are connected in parallel to increase the transmission and reception capacity. When connected in parallel, circulating current is generated due to line impedance difference or sensor error. As a result of circulating current, there is deterioration and loss in particular PCS(Power Conversion System). In this paper, we propose droop control with novel adaptive virtual impedance for reducing circulating current. Feasibility of proposed algorithm is verified by PowerSIM simulation.

  • PDF

Redundant Operation of a Parallel AC to DC Converter via a Serial Communication Bus

  • Kanthaphayao, Yutthana;Kamnarn, Uthen;Chunkag, Viboon
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.533-541
    • /
    • 2011
  • The redundant operation of a parallel AC to DC converter via a serial communication bus is presented. The proposed system consists of three isolated CUK power factor correction modules. The controller for each converter is a dsPIC30F6010 microcontroller while a RS485 communication bus and the clock signal are used for synchronizing the data communication. The control strategy of the redundant operation relies on the communication of information among each of the modules, which communicate via a RS485 serial bus. This information is received from the communication checks of the converter module connected to the system to share the load current. Performance evaluations were conducted through experimentation on a three-module parallel-connected prototype, with a 578W load and a -48V dc output voltage. The proposed system has achieved the following: the current sharing is quite good, both the transient response and the steady state. The converter modules can perform the current sharing immediately, when a fault is found in another converter module. In addition, the transient response occurs in the system, and the output voltages are at their minimum overshoot and undershoot. Finally, the proposed system has a relatively simple implementation for the redundant operation.

Parallel Operation Method using New Cubic Equation Droop Control of Three-Phase AC/DC PWM Converter for DC Distribution Systems (DC배전용 3상 AC/DC PWM 컨버터의 새로운 3차방정식 Droop 제어를 적용한 병렬운전 기법)

  • Shin, Soo-Choel;Lee, Hee-Jun;Park, Yun-Wook;Hong, Seok-Jin;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.233-239
    • /
    • 2014
  • This paper proposes that each converter supplies the power using the proposed droop control for the parallel operation of the converters. The proposed method is easy to increase the power as parallel system in DC distribution. By improving conventional droop-control method used in AC grid newly, a droop controller is designed to apply droop control in DC grid. And the control method of the proposed droop controller is explained particularly. In this paper, by applying the proposed control method to DC distribution system, propriety is verified through the simulation and the experiment.

A Study on the Four AC/DC Converter Parallel Operation for a Traction Drive (견인용 AC/DC 컨버터 4병렬 운전에 관한 연구)

  • Ryoo, Hong-Je;Woo, Myung-Ho;Kim, Jong-Soo;Kim, Won-Ho;Rim, Geun-Hie
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2671-2673
    • /
    • 1999
  • Front end AC to DC converters of the boost type are used in traction applications for generating the DC link for the inverters. A GTO based converter is usually switched with a switching frequency of 300 to 500Hz, resulting in low frequency harmonic problems. In order to avoid this, multiple converters with phase shifted carrier signals are used to suppress the low frequency harmonics. A detailed study of an AC to DC converter, parallel operated with reduced sensor and improved power-factor in light load conditions is presented in this paper.

  • PDF

A Novel Three Phase Series-Parallel Resonant Converter Fed DC-Drive System

  • Daigavane, Manoj;Suryawanshi, Hiralal;Khan, Jawed
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.222-232
    • /
    • 2007
  • This paper presents the application of a single phase AC-to-DC converter using a three-phase series parallel (SPRC) resonant converter to variable speed dc-drive. The improved power quality converter gives the input power factor unity over a wide speed range, reduces the total harmonic distortion (THD) of ac input supply current, and makes very low ripples in the armature current and voltage waveform. This soft-switching converter not only possesses the advantages of achieving high switching frequencies with practically zero switching losses but also provides full ranges of voltage conversion and load variation. The proposed drive system is the most appropriate solution to preserve the present separately excited de motors in industry compared with the use of variable frequency ac drive technology. The simulation and experimental results are presented for variable load torque conditions. The variable frequency control scheme is implemented using a DSP- TMS320LF2402. This control reduces the switching losses and current ripples, eliminates the EMI and improves the efficiency of the drive system. Experimental results confirm the consistency of the proposed approach.

Novel Modular 3-phase AC-DC Flyback Converter for Telecommunication

  • Choi Ju-Yeop;Lee J.P.;Kim T.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.314-320
    • /
    • 2001
  • A novel mode of parallel operation of a modular 3-phase AC-DC flyback converter for power factor correction along with tight regulation was recently analyzed and presented. The advantage of the proposed converter does not require expensive high voltage and high current devices that are normally needed in popular boost type 3-phase converter. In this paper the detailed small signal analysis of the modular 3-phase AC-DC flyback converter is provided for control purposes and also experimental results are included to confirm the validity of the analysis.

  • PDF

A Feasibility Design of PEMFC Parallel Operation for a Fuel Cell Generation System

  • Kang, Hyun-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Hur, Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.408-421
    • /
    • 2008
  • In this paper, the parallel operation for a FC generation system is introduced and designed in order to increase the capacity for the distributed generation of a proton exchange membrane fuel cell (PEMFC) system. The equipment is the type that is used by parallel operated PEMFC generation systems which have two PEMFC systems, two dc/dc boost converters with shared dc link, and a grid-connected dc/ac inverter for embedded generation. The system requirement for the purpose of parallel operated generation using PEMFC system is also described. Aspects related to the mechanical (MBOP) and electrical (EBOP) component, size, and system complexity of the distributed generation system, it is explained in order to design an optimal distributed generation system using PEMFC. The optimal controller design for the parallel operation of the converter is suggested and informative simulations and experimental results are provided.

A Study on the Characteristics Analysis of LLC AC to DC High Frequency Resonant Converter capable of ZVZCS (ZVZCS가 가능한 LLC AC to DC 고주파 공진 컨버터의 특성 해석에 관한 연구)

  • Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.741-749
    • /
    • 2021
  • This paper presents the current-fed type LLC AC to DC high frequency resonant converter capable of ZVZCS(Zero-Voltage and Zero-Current Switching). The current-fed type LLC AC to DC high frequency resonant converter proposed in this paper could operate not only in ZVS(Zero-Voltage Switching) operation by connecting the resonant capacitors(C1, C2) in parallel across the switching devices but also in ZCS(Zero-Current Switching) operation of the secondary diode. The ZVS and ZCS operations can reduce the turn-on loss of the switching devices and the turn-off loss of the secondary diodes, respectively. The circuit analysis of current-fed type LLC AC to DC high frequency resonant converter proposed in this paper is addressed generally by adopting the normalized parameters. The operating characteristics of proposed LLC AC to DC high frequency resonant converter were also evaluated by using the normalized control parameters such as the normalized control frequency(μ), the normalized load resistor(λ) and so on. Based on the characteristic values through the characteristics of evaluation, an example of the design method of proposed LLC AC to DC high frequency resonant converter is suggested, and the validity of the theoretical analysis is confirmed using the experimental results and PSIM simulation.