• Title/Summary/Keyword: Parabolic dish concentrator

Search Result 13, Processing Time 0.022 seconds

A Evaluation of Sun Tracking Performance of Parabolic Dish Concentrator using Vision System (비전시스템을 이용한 태양추적시스템의 추적정밀도 평가)

  • 안효진;박영칠
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.408-408
    • /
    • 2000
  • A parabolic dish concentrator used in a high temperature application of solar energy tracks the sun's movement by two axis sun tracking system. In such a system, sun tracking performance affects the system efficiency directly. Generally the higher the tracking accuracy is, the better the system performance is. A large number of parabolic dish type concentrators has been developed and implemented in the world. However none of them clearly provided a qualitative method of how the accuracy of the sun tracking system can be evaluated. The work presented here is the evaluation of sun tracking performance of parabolic dish concentrator, which follows the sun's movement by the sensor, using computer vision system. We install a camera on the parabolic dish concentrator. While the concentrator follows the sun, sun's images are captured continuously. Then the performance of sun tracking system was evaluated by analyzing the variation of the position of the sun in the images.

  • PDF

A Performance Evaluation of Sensor Type Sun Tracking System (센서식 태양추적시스템의 추적정밀도 평가)

  • Park, Y.C.;Kang, Y.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.4
    • /
    • pp.55-62
    • /
    • 2001
  • A parabolic dish concentrator used in a high temperature application of solar energy tracks the sun's movement by two axis sun tracking system. In such a system, sun tracking performance affects the system efficiency directly. Generally the higher the tracking accuracy is, the better the system performance is. A large number of parabolic dish type concentrators has been developed and implemented in the world. However none of them clearly provided a qualitative method of how the accuracy of the sun tracking system can be evaluated. The work presented here is the evaluation of sun tracking performance of parabolic dish concentrator, which follows the sun's movement by the sensor, using a computer vision system. We install a camera on the parabolic dish concentrator. While the concentrator follows the sun, sun's images are captured continuously. Then the performance of sun tracking system was evaluated by analyzing the variation of the position of the sun in the captured images.

  • PDF

A Study on the Development of Two Axes Sun Tracking System for the Parabolic Dish Concentrator (Parabolic Dish형 태양열 집열기를 위한 2축 태양추적장치의 개발에 관한 연구)

  • Park, Y.C.;Kang, Y.H.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.81-91
    • /
    • 1999
  • The work presented here is a design and development of sun tracking system for the parabolic dish concentrator. Parabolic dish concentrator is mounted on azimuth and elevation tracking mechanism, and controlled to track the sun with computed and measured sun positions. Sun tracking mechanism is composed of 1/30000 speed reducer(3 stages) and 400W AC servomotor for each axis. The nominal tracking speed of each axis is ${\pm}0.6^{\circ}/sec$ and the system has a driving range of $340^{\circ}$ in azimuth and of $135^{\circ}$ in elevation. Sun tracking control system consists of sun sensor, wind speed and direction measurement system, AC servomotor position control system and personal computer as a master controller. Sun sensor detects the sun located within ${\pm}50^{\circ}$ measured from the sun sensor normal direction. Computer computes the sun position, sunrise and sunset times and controls the orientation of parabolic dish concentrator through the AC servomotor position control system. It also makes a decision of whether the system should follow the sun or not based on the information collected from sun sensor and wind speed and direction measurement system. The sun tracking system developed in this work is implemented for the experimental work and shows a good sun tracking performance.

  • PDF

Performance Analysis on Solar Tracking Daylighting Systems Using Different Types of Solar Collectors: Parabolic Dish vs. Fresnel Lens (태양추적식 자연채광 장치의 집광기 종류에 따른 성능 분석: 포물 반사경 vs. 프레넬 렌즈)

  • Kim, Yeongmin;Kim, Won-Sik;Jeong, Hae-Jun;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.1
    • /
    • pp.39-45
    • /
    • 2017
  • This paper presents the effect of solar collectors on the performance of solar tracking daylighting systems. A series of measurements were made for two different types of solar collectors mounted on double axis solar trackers: Parabolic dish concentrator and Fresnel Lens. Indoor light levels were measured at different locations of an office space (longitude: 126.33 E, latitude 33.45 N) as photo sensors were placed on a task plane 80 cm above the floor. To accurately monitor the applicability of the systems, measurements were performed under clear and overcast sky conditions with the roll-screen (on the south window) in the down position. Comparing the illuminance data, the system with Fresnel lens outperformed that of parabolic dish concentrator. On clear days, the former delivered the light levels of 400~600 lux on the task plane whereas the latter recorded 100~200 lux. Depending on the amount of cloud cover, on overcast days, illuminance readings fluctuated to some extent.

A Feasibility Study of Using a Mini-dish Cluster for Solar Power Generation (소형 태양 반사경 클러스터를 이용한 태양열 발전에 대한 타당성 연구)

  • Oh, Seung-Jin;Lee, Jung-Sung;Hyun, Joon-Ho;Kim, Nam-Jin;Chun, Won-Gee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.161-164
    • /
    • 2006
  • This paper introduces a preliminary work for the design of a mini-dish cluster system for power general ion. Each mini-dish (typically has a 20 to 30cm in diameter) is designed with a simple parabolic profile, concentrating sun light (after the glass glazing cover to avoid dust deposition on the reflector and facilitate cleaning) onto a centrally located small plane(or concave) mirror which is placed on the bottom side of the transparent glass cover. The mirror with a mini-dish concentrator is designed to focus beam radiation onto a focal point before it enters a bundle of optical fibers connected to a remote receiver for power generation different options are considered In designing a mini-dish concentrator to maximize its effectiveness for the collection and use of solar energy.

  • PDF

A Feasibility Study of using Mini-dish Systems for Solar Power Generation (소형 태양 반사경 Cluster를 이용한 태양열 발전에 대한 타당성 연구)

  • Oh, Seung-Jin;Hyun, Joon-Ho;Chun, Won-Gee;Han, Hyun-Joo;Kim, Jeong-Tai
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.39-45
    • /
    • 2006
  • This paper introduces a preliminary work for the design of a mini-dish cluster system for power generation. Each mini-dish [typically has a 20 to 30 cm in diameter] is designed with a simple parabolic profile concentrating sun light [after the glass glazing cover to avoid dust deposition on the reflector and facilitate cleaning] onto a centrally located small plane[or concave] mirror which is placed on the bottom side of a transparent glass cover. The mirror with a mini-dish concentrator is designed to focus beam radiation onto a focal point before it enters a bundle of optical fibers connected to a remote receiver for power generation. Different options are considered in designing a mini-dish concentrator to maximize its effectiveness for the collection and use of solar energy.

  • PDF

Heat Losses from the Receivers of a Multifaceted Parabolic Solar Energy Collecting System

  • Seo, Taebeom;Ryu, Siyoul;Kang, Yongheock
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1185-1195
    • /
    • 2003
  • Heat losses from the receivers of a dish-type solar energy collecting system at the Korea Institute of Energy Research (KIER) are numerically investigated. It is assumed that a number of flat square mirrors are arranged on the parabolic dish structure to serve as a reflector. Two different types of receivers, which have conical and dome shapes, are considered for the system, and several modes of heat losses from the receivers are thoroughly studied. Using the Stine and McDonald model convective heat loss from a receiver is estimated. The Net Radiation Method is used to calculate the radiation heat transfer rate by emission from the inside surface of the cavity receiver to the environment. The Monte-Carlo Method is used to predict the radiation heat transfer rate from the reflector to the receiver. Tracing the photons generated, the reflection loss from the receivers can be estimated. The radiative heat flux distribution produced by a multifaceted parabolic concentrator on the focal plane is estimated using the cone optics method. Also, the solar radiation spillage around the aperture is calculated. Based on the results of the analysis, the performances of two different receivers with multifaceted parabolic solar energy collectors are evaluated.

Performance Comparison of Dish Solar Collector With Mirror Arrays & Receiver Shapes (반사경 배치와 흡수기 형상에 따른 접시형 고온 태양열 시스템 성능비교)

  • Ma, Dae-Sung;Kim, Yong;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.29-38
    • /
    • 2007
  • In order to analyze the performance comparison of dish solar collector with mirror arrays and receiver shapes, the radiative heat flux distribution inside the cavity receiver is numerically investigated. The solar irradiation reflected by dish solar collector is traced using the Monte-Carlo method. Five different dish solar collectors and three different cavity receivers are considered. A parabolic-shaped perfect mirror of which diameter is 1.5 m is considered as a reference dish solar collector and four different arrays of twelve identical parabolic-shaped mirror facets of which diameter are 0.4 m are used. Their reflecting areas, which are $1.5\;m^2$, are the same. Three different cavity receiver shapes are dome, conical, and cylindrical. In addition, the radiative properties of the concentrating surfaces can vary the thermal performance of the cavity receiver so that variation of the surface reflectivity of each mirror is considered. Based on the calculation, the design information of dish solar collector for producing the electric power can be obtained. The results show that the dome type has the best performance in receiver shapes and the 2AND4 INLINE has the best performance in mirror arrays except perfect mirror.

Experimental Evaluation of a Fiber Optic Concentrator for Daylighting (실내조명용 화이버 광학 집광기의 성능에 관한 실험적 평가)

  • Han, Hyun-Joo;Kim, Jeong-Tai
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.3
    • /
    • pp.27-34
    • /
    • 2008
  • A series of outdoor tests were conducted on a fiber optic solar concentrator system for its performance on daylighting. The system is comprised of four main components - a parabolic dish reflector, a convex mirror, a homogenizer tube and an optical fiber cable. Results show that the system could be successfully applied for indoor lighting if some improvements are made for light transmiting (optical) cables. A maximum concentration ratio of 90 was observed delivering the illuminance of 4,800 lux at a distance of 1.2m from the diffuser for the outdoor illuminance of 102,100 lux.

Study on the Characteristics of Scroll type Stirling Engine Receiver for Solar Thermal Power (태양열 발전용 스크롤 방식 스터링엔진 흡수기 특성 연구)

  • Seo, Ho-Young;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.62-67
    • /
    • 2009
  • This paper describes the characteristics of scroll type stirling engine receiver. Scroll type stirling engine operated scroll compressor and expander instead of piston. Pass dimension of the receiver was $14(W){\times}14(H)$ mm and total pass length was 5,049 mm. External dimension of the receiver was $300{\times}300mm$. The experimental facility consisted of parabolic dish concentrator, compressor to supply air, triplex air filter, and flowmeter. In this study, basic experimental conditions were set at a inlet pressure of 5 bar and volume flow rate of $25m^3/hr$. As a result, air temperature in receiver at each measuring position of point 1, 2, 3 were $241^{\circ}C$, $465^{\circ}C$, and $542^{\circ}C$ respectively at inlet pressure of 5.5 bar and volume flow rate of $24.6m^3/hr$. As DNI increasing, heat transfer coefficient of the receiver changed from $695W/m^2K$ to $827W/m^2K$. Average heat transfer coefficient of receiver in the experiment was $798W/m^2K$. In addition, receiver efficiency became about 83%.

  • PDF