• Title/Summary/Keyword: Parabolic antenna

Search Result 52, Processing Time 0.029 seconds

Method to specify Subsidiary Device Positioning for Sidelobe Distortion Suppression of Parabolic Antenna (파라볼라 안테나 부엽 왜곡 억제를 위한 부속 장치 위치 지정 방법)

  • Kim, Seungho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.49-53
    • /
    • 2018
  • Parabolic offset antenna is widely used for wireless communication system. The general structure of parabolic offset antenna system is composed of supporting stand and RF devices under parabolic reflector. However sidelobe distortion in gain pattern is occurred by supporting stand and RF devices. Depending on position of subsidiary devices, angle of sidelobe distortion can be changed. In this paper we describe method for sidelobe distortion suppression using raytracing. We calculate 3D vector for sidelobe distortion suppression zone by raytracing method and compare when subsidiary device is in sidelobe distortion suppression zone or not. By comparison, we show method for parabolic antenna sidelobe distortion suppression.

Sidelobe Distortion Analysis of Offset Parabolic Antenna by Scatterer (산란체에 의한 오프셋 파라볼라 안테나 부엽 왜곡 분석)

  • Kim, Seungho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.43-48
    • /
    • 2018
  • Offset parabolic antenna have been widely used for satellite communication system. To locate feedhorn on antenna system, it requires arbitrary structure which forces to fix on system. However, arbitrary scatterer increases sidelobe level of elevation axis. To solve this problem, we need to predict which angle level is increased by arbitrary scatterer simply. Because conventional simulation method takes a long time to simulate parabolic antenna system and needs exclusive software. In this paper we can calculate sidelobe angle simply by using raytracing method, check coincidence between calculated and simulated result and show how arbitrary scatterer affects sidelobe lavel of elevation axis of offset parabolic antenna depending on angle and location of arbitrary structure.

Design of a Spinning Direction-Finding Compact Offset-Parabolic-Reflector Antenna for Airborne Applications (항공용 회전 방향탐지 소형 옵셋 파라볼릭 반사판 안테나 설계)

  • Park, Young-Ju;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.766-773
    • /
    • 2016
  • This paper proposes an aircraft-installed compact offset-parabolic-reflector antenna for the spinning direction-finding applications. The feeder of the reflector antenna is a LPDA antenna that has the ultra-wideband characteristics and the $45^{\circ}$ slant linear polarization. The reflector is designed to be slanted by $5^{\circ}$ in the elevation and to be small in size on the basis of the reference parabolic shape for the purpose of the high gain and mounting on the underside of aircraft fuselage. Over the ultra-wideband 20:1 bandwidth from S to Ka band, the measured average gain of the proposed antenna is 27.97 dBi, and the average half-power beam width is $4.55^{\circ}$ in the azimuth and $4.3^{\circ}$ in the elevation which is the pencil-beam radiation pattern. All the measured data are similar to the simulation results. The designed compact offset-parabolic-reflector antenna that is installed in the limited area has the ultra-wideband and high-gain characteristics. We expect that the newly designed antenna can be applied to the spinning direction-finding antenna system installed in an aircraft.

A Design of Low Profile Ku Band Parabolic Antenna using Elliptical Reflector Shape (타원 반사면 구조를 이용한 Low Profile Ku밴드 파라볼라 안테나의 설계)

  • Ryu, Daun;Lee, Kyung-Soon;Park, Dae-Kil;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.466-471
    • /
    • 2017
  • SOTM is a device for the satellite communication on the move. Many studies are conducted on microstrip, waveguide and array antenna for the low profile of the SOTM's antenna. But those antennas have a problem that is difficult to adjust the polarization, and for that reason we have studied the parabolic antenna structure. The general form of parabolic reflector structure is circular, but we used cut-off shape reflector by cutting the upper and lower reflector for low profile antenna. Accordingly, this results in the decrease of reflector area which causes reduced gain and G/T ratio. In order to solve this problem, we have transformed and designed the sub reflector for improving the efficiency and gain of the cut- off shape parabolic antenna.

A Study on the Fabrication of Microstrip Array Antenna for Koreasat Reception (무궁화 위성방송 수신용 마이크로스트립 어레이 안테나 제작에 관한 연구)

  • 전주성;이윤현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.544-552
    • /
    • 2000
  • In this paper, the microstrip antenna is studied to replace the parabolic antenna in the DBS reception. It is expected that the good picture quality DBS reception will be possible with this antenna irrespective of rain attenuation for the 99.9% time in a monthly average since the C/N ratio f 19dB is proved by the reception experiment of a Koreasat with fabricated antenna. From the results of this paper, it is shown that the electrical characteristics of the microstrip antenna can be improved to the level similar to that of the parabolic antenna. Hence, it is considered that the fabricated microstrip antenna can replace the parabolic antenna in DBS service coverage.

  • PDF

Design of the Position Control System for Parabolic Antenna using Gyro Sensor (자이로센서를 이용한 파라볼릭 안테나의 위치제어시스템 설계)

  • Kim, Myeong Kyun;Kim, Jin Soo;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.85-91
    • /
    • 2013
  • In this paper, the parabolic antenna aims to the precise location of a moving ship or car that can be designed system using the gyro sensor. The parabolic antenna has controlled by stepping motor that is a lot of noise and slow response of speed. It has solved the problem which is noise and slow response using the BLDC motor. Also, in order to suppress the noise two-axis control and a separate encoder to the six degrees of freedom motion system was implemented in a precise location. Generally, the gyro sensor is not required to system that doesn't move the six degrees of freedom motion system. But the system will be applied to the moving such as ships or cars. Finally, we presented the position control algorithm at the sometimes controlled both gyro sensor and BLDC motor. This system was tracking that the location of the antenna to the desired angle and errors almost didn't happen when the system was moved 6 degrees of freedom.

A Study on the Design of an Offset Parabolic Antenna for the Domestic Broadcasting Satellite (國內 放送 衛星을 위한 오프셋 파라볼라 안테나의 設計에 關한 硏究)

  • Choi, Hak-Kuen;Park, Sung-Lyong;Park, Cheong-Kee
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.2
    • /
    • pp.66-75
    • /
    • 1989
  • Simple formulas for evaluating the radiation characteristics of an offset parabolic antennas are presented. The validity of the proposed equations was verified by comparing the results wit the numerical clculation. The offset parabolic antenna for the domestic broadcasting satellite has been designed by using of simple formulas. The radiation patterns of the desinged offset parabolic antenna show good agreement with experimental results.

  • PDF

The Analysis of Scattering Characteristics of a Prime-focus Offset Parabolic Antenna with a Shaped Edge Structure (정형 모서리 구조를 갖는 옵\ulcornerV 파라볼릭 안테나의 산란 특성 해석)

  • 박대성;김형규;최재훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.3
    • /
    • pp.412-418
    • /
    • 1999
  • The scattering characteristics of a prime-focus offset-parabolic antenna are analyzed using UTD. First, ray tracing method is used to locate the shadow boundaries, and then UTD is utilized to evalute the far-zone scattered magnetic field pattern. The field components included in the UTD analysis are the reflected, edge diffracted and creeping waves. The effects of circular caps attached to both edges of a prime-focus offset-parabolic antenna are investigated by comparing the scattered magnetic field patterns with those of a knife edge parabolic reflector.

  • PDF

A Comparison for Radiation Pattern of Parabolic Antennas with Sidelobe Suppressor (측엽억제장치부포물형 공중선의 복사패턴 비교)

  • Lee, Dai-Young;Son, Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.9 no.1
    • /
    • pp.39-44
    • /
    • 1984
  • Three types of parabolic antenna to reduce the sidelobes and backlobe are compared to determine the best suppressive effect under same conditions which are side rim loading parabilic antenna, flanged prabolic antenna. The hooded parabolic antenna adhered polyurethan form impregnated carbon powder in shows the best shape of suppressed the side back lobes that is 5 to 10 dB suppression of sidelobe and 15dB suppression of back lobe for E-plane.

  • PDF

A Study on Parabolic Edge Planar Monopole Antenna for UWB Communication (초광대역(UWB) 통신을 위한 포물선 엣지 형태의 평면 모노폴 안테나에 대한 연구)

  • Chang, Tae-Soon;Hur, Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.612-620
    • /
    • 2008
  • In this parer, parabolic edge planar monopole antenna for UWB communication is presented. The antenna have broadband property structurally through planar monopole and ground which have parabolic edge. It is designed close to self-complementary structure as changing curvature of edge of monopole and ground. Monopole and ground of proposed antenna exist on coplanar plane, and excite as coaxial feeding. It used FR4 dielectric substrate of ${\varepsilon}_r=4.4$, and the size is $26{\times}31{\times}1.6mm$. Return loss is more than 10 dB in $3.1{\sim}10.6GHz$. Radiation pattern is about the same that of dipole antenna at all frequency. At measured result, max gain is $1.37{\sim}6.02dBi$ at E-plane.