• 제목/요약/키워드: Paper-based sensors

검색결과 2,754건 처리시간 0.028초

Analytic Formulation of Transmission Light Intensity of Hole Blockers in Intensity-based Polymer Optical Fiber Sensors

  • Kwon, Il-Bum;Kim, Chi-Yeop;Shim, Chan-Wook;Hwang, Du-Sun;Chung, Yung-Joo
    • 센서학회지
    • /
    • 제20권4호
    • /
    • pp.221-225
    • /
    • 2011
  • Intensity-based optical fiber sensors are devised using a blocker which is located between two polymer optical fibers(POFs), one fiber is light-in and the other is light-out. This blocker is moved by an external displacement. Therefore, finding a general formulation of the relation between this displacement and transmission light intensity of various blockers is important to help develop intensity-based optical fiber sensors. In this paper, we consider blockers with arbitrary shapes from circular holes to inclined angled blockers. The transmission light intensities of such blockers should be determined by this generalized equation. In order to verify this equation, the calculated intensities of the blockers are compared with the values acquired from experiment. In the comparison, it is shown that the analytic equation can give the exact values of the transmitted light intensities for the assorted blockers. The range of the displacement measurement is also shown to be about 6 times of the radius of the hole in the case of a 9 degree inclined angle blocker.

상태 관측기 및 보상기를 이용한 전동기의 센서리스 운전 (Sensorless Operation of DC Motors Using State Observers and Compensators)

  • 김윤호;윤병도;양찬모
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.366-370
    • /
    • 1990
  • Generally, when servo system is used, various sensors are required to have comparison and compensation to the reference value. However, the sensors are relatively expensive, and cannot be always implemented because of the limit of space or the environmental conditions. In this paper, state observer systems without sensors are investigated. State observer systems are required to estimate the states quickly and exactly without being affected by the disturbances. Thus, in this paper, the effects of systems poles and observer poles are studies. In addition, the parameter variations are also considered to evaluate the effect of them to the observer based systems. Also, in this paper a whole system which includes compensators, observers and loads are considered and analysed by using numerical simulations.

  • PDF

제한된 수의 Sensor를 이용한 Averaged MUSIC의 효율성에 관한 연구 (A Study on the Effectiveness of Averaged MUSIC Using Limited Number of Sensors)

  • 김영집
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1993년도 학술논문발표회 논문집 제12권 1호
    • /
    • pp.206-209
    • /
    • 1993
  • The main purpose of this paper is to verify the effectiveness of a high resolution direction finding method, so called the‘averaged MUSIC’. This method uses a new sample array covariance matrix that consists of diagonal components obtained by taking averages of the diagonal component values of the sample covariance matrix for the MUSIC. The paper shows that the proposed method performs higher resolved direction-of-arrival estimation and better resolution probability than the MUSIC in such cases as low signal-to-noise ratio, when the number of sensors used is finite, based on the statistical analysis.

  • PDF

모바일 증강현실 구현을 위한 사용자의 위치/자세 추정 (Estimation of the User's Location/Posture for Mobile Augmented Reality)

  • 김주영;이수용
    • 제어로봇시스템학회논문지
    • /
    • 제18권11호
    • /
    • pp.1011-1017
    • /
    • 2012
  • Augmented Reality is being widely used not only for Smartphone users but also in industries such as maintenance, construction area. With smartphone, due to the low localization accuracy and the requirement of special infrastructure, current LBS (Localization Based Service) is limited to show P.O.I. (Point of Interest) nearby. Improvement of IMU (Inertial Measurement Unit) based deadreckoning is presented in this paper. Additional sensors such as the magnetic compass and magnetic flux sensors are used as well as the accelerometer and the gyro for getting more movement information. Based on the pedestrian movement, appropriate sensor information is selected and the complementary filter is used in order to enhance the accuracy of the localization. Additional sensors are used to measure the movements of the upper body and the head and to provide the user's line of sight.

센서 특성 및 배치를 고려한 에미터 위치탐지 영역 분석에 관한 연구 (A Study on Analysis of Emitter Geolocation Coverage Area based on the Characteristics and Deployment of Sensors)

  • 양종원;박철순;장원
    • 한국군사과학기술학회지
    • /
    • 제9권1호
    • /
    • pp.99-108
    • /
    • 2006
  • In this paper, we analyzed the characteristics of emitter geolocation coverage area within which the emitter lies with a specified probability based on the LOBs(Line of Bearing) of sensors. Stansfield and MSD algorithms were applied to calculate BPE(Best Point Estimate), EEP(Elliptical Error Probable) and CEP(Circular Error Probable), They used the weighting factors composed of ${\sigma}_{Phi}$ (bearing error), QF(quality factor), $P_{e}$ (probability being inside) to optimize the performance. The characteristics of EEP was investigated in the change of them and those of CEP was analyzed based on the deployment of sensors.

Application of structural health monitoring in civil infrastructure

  • Feng, M.Q.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.469-482
    • /
    • 2009
  • The emerging sensor-based structural health monitoring (SHM) technology has a potential for cost-effective maintenance of aging civil infrastructure systems. The author proposes to integrate continuous and global monitoring using on-structure sensors with targeted local non-destructive evaluation (NDE). Significant technical challenges arise, however, from the lack of cost-effective sensors for monitoring spatially large structures, as well as reliable methods for interpreting sensor data into structural health conditions. This paper reviews recent efforts and advances made in addressing these challenges, with example sensor hardware and health monitoring software developed in the author's research center. The hardware includes a novel fiber optic accelerometer, a vision-based displacement sensor, a distributed strain sensor, and a microwave imaging NDE device. The health monitoring software includes a number of system identification methods such as the neural networks, extended Kalman filter, and nonlinear damping identificaiton based on structural dynamic response measurement. These methods have been experimentally validated through seismic shaking table tests of a realistic bridge model and tested in a number of instrumented bridges and buildings.

자율주행 셔틀버스의 통신 정보 융합 기반 충돌 위험 판단 알고리즘 개발 (Development of I2V Communication-based Collision Risk Decision Algorithm for Autonomous Shuttle Bus)

  • 이승민;이창형;박만복
    • 자동차안전학회지
    • /
    • 제11권3호
    • /
    • pp.19-29
    • /
    • 2019
  • Recently, autonomous vehicles have been studied actively. Autonomous vehicles can detect objects around them using their on board sensors, estimate collision probability and maneuver to avoid colliding with objects. Many algorithms are suggested to prevent collision avoidance. However there are limitations of complex and diverse environments because algorithm uses only the information of attached environmental sensors and mainly depends on TTC (time-to-Collision) parameter. In this paper, autonomous driving algorithm using I2V communication-based cooperative sensing information is developed to cope with complex and diverse environments through sensor fusion of objects information from infrastructure camera and object information from equipped sensors. The cooperative sensing based autonomous driving algorithm is implemented in autonomous shuttle bus and the proposed algorithm proved to be able to improve the autonomous navigation technology effectively.

스마트폰에서 센서 융합과 커널 판별 분석을 이용한 인간 활동 인식 (Human Activity Recognition Using Sensor Fusion and Kernel Discriminant Analysis on Smartphones)

  • 조정길
    • 한국융합학회논문지
    • /
    • 제11권5호
    • /
    • pp.9-17
    • /
    • 2020
  • 스마트폰을 이용한 인간 활동 인식은 컴퓨터 지능 분야에서 뜨거운 연구 주제이다. 스마트폰에는 다양한 센서가 장착되어 있다. 이러한 센서의 데이터를 융합하면 응용프로그램에서 많은 활동을 인식할 수 있다. 그러나 이러한 장치는 활용 가능한 센서 수가 제한되기 때문에 리소스가 적으며, 최적의 성능과 효율적인 특징 추출을 달성하기 위해서는 특징 선택 및 분류 방법이 필요하다. 이 논문에서는 이러한 요구사항에 따라 스마트폰-기반 HAR 체계를 제안한다. 이 논문에서 제안된 방법은 가속도 센서, 자이로 센서, 기압 센서에서 시간-도메인 특징을 추출하며, 커널 판별 분석(KDA)과 SVM을 적용하여 높은 정확도로 활동을 인식한다. 이 방법은 각 활동에 대해 각 센서에서 가장 관련성이 높은 특징을 선택한다. 우리의 비교 결과는 제안된 시스템이 이전의 스마트폰-기반 HAR 시스템보다 성능이 우수함을 보여준다.

Implementation of Rule-based Smartphone Motion Detection Systems

  • Lee, Eon-Ju;Ryou, Seung-Hui;Lee, So-Yun;Jeon, Sung-Yoon;Park, Eun-Hwa;Hwang, Jung-Ha;Choi, Doo-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권7호
    • /
    • pp.45-55
    • /
    • 2021
  • 스마트폰에 내장된 각종 센서를 통해 획득할 수 있는 정보는 사용자의 움직임, 상황 등을 파악하고 분석하는데 유용하게 활용될 수 있다. 본 논문에서는 스마트폰의 가속도 센서와 자이로스코프 센서에서 얻은 정보를 분석하여 'I', 'S', 'Z' 모션을 인식하는 두 가지 규칙기반 시스템을 제안한다. 먼저, 각 모션에 대한 가속도 및 각속도의 특성을 분석한다. 이를 기반으로 두 가지 종류의 규칙기반 모션 인식 시스템을 제안하고 이를 안드로이드 앱으로 구현하여 각 모션에 대한 성능을 비교한다. 두 가지 규칙기반시스템은 각 모션에 대해서 90% 이상의 인식률을 보이며 앙상블을 이용한 규칙기반 시스템은 다른 시스템보다 향상된 성능을 보인다.

Hybrid Fault Detection and Isolation Techniques for Aircraft Inertial Measurement Sensors

  • Kim, Seung-Keun;Jung, In-Sung;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.73-83
    • /
    • 2006
  • In this paper, a redundancy management system for aircraft is studied, and fault detection and isolation algorithms of inertial sensor system are proposed. Contrary to the conventional aircraft systems, UAV system cannot allow triple or quadruple hardware redundancy due to the limitations on space and weight. In the UAV system with dual sensors, it is very difficult to identify the faulty sensor. Also, conventional fault detection and isolation (FDI) method cannot isolate multiple faults in a triple redundancy system. In this paper, two FDI techniques are proposed. First, hardware based FDI technique is proposed, which combines a parity equation approach with a wavelet based technique. Second, analytic FDI technique based on the Kalman filter is proposed, which is a model-based FDI method utilizing the threshold value and the confirmation time. To provide the reference value for detecting the fault, residuals are calculated using the extended Kalman filter. To verify the effectiveness of the proposed FDI methods, numerical simulations are performed.