• Title/Summary/Keyword: Paper based packaging

검색결과 228건 처리시간 0.029초

전기자동차용 고신뢰성 파워모듈 패키징 기술 (Power Module Packaging Technology with Extended Reliability for Electric Vehicle Applications)

  • 윤정원;방정환;고용호;유세훈;김준기;이창우
    • 마이크로전자및패키징학회지
    • /
    • 제21권4호
    • /
    • pp.1-13
    • /
    • 2014
  • The paper gives an overview of the concepts, basic requirements, and trends regarding packaging technologies of power modules in hybrid (HEV) and electric vehicles (EV). Power electronics is gaining more and more importance in the automotive sector due to the slow but steady progress of introducing partially or even fully electric powered vehicles. The demands for power electronic devices and systems are manifold, and concerns besides aspects such as energy efficiency, cooling and costs especially robustness and lifetime issues. Higher operation temperatures and the current density increase of new IGBT (Insulated Gate Bipolar Transistor) generations make it more and more complicated to meet the quality requirements for power electronic modules. Especially the increasing heat dissipation inside the silicon (Si) leads to maximum operation temperatures of nearly $200^{\circ}C$. As a result new packaging technologies are needed to face the demands of power modules in the future. Wide-band gap (WBG) semiconductors such as silicon carbide (SiC) or gallium nitride (GaN) have the potential to considerably enhance the energy efficiency and to reduce the weight of power electronic systems in EVs due to their improved electrical and thermal properties in comparison to Si based solutions. In this paper, we will introduce various package materials, advanced packaging technologies, heat dissipation and thermal management of advanced power modules with extended reliability for EV applications. In addition, SiC and GaN based WBG power modules will be introduced.

Printing Morphology and Rheological Characteristics of Lead-Free Sn-3Ag-0.5Cu (SAC) Solder Pastes

  • Sharma, Ashutosh;Mallik, Sabuj;Ekere, Nduka N.;Jung, Jae-Pil
    • 마이크로전자및패키징학회지
    • /
    • 제21권4호
    • /
    • pp.83-89
    • /
    • 2014
  • Solder paste plays a crucial role as the widely used joining material in surface mount technology (SMT). The understanding of its behaviour and properties is essential to ensure the proper functioning of the electronic assemblies. The composition of the solder paste is known to be directly related to its rheological behaviour. This paper provides a brief overview of the solder paste behaviour of four different solder paste formulations, stencil printing processes, and techniques to characterize solder paste behaviour adequately. The solder pastes are based on the Sn-3.0Ag-0.5Cu alloy, are different in their particle size, metal content and flux system. The solder pastes are characterized in terms of solder particle size and shape as well as the rheological characterizations such as oscillatory sweep tests, viscosity, and creep recovery behaviour of pastes.

150℃이하 저온에서의 미세 접합 기술 (Low Temperature bonding Technology for Electronic Packaging)

  • 김선철;김영호
    • 마이크로전자및패키징학회지
    • /
    • 제19권1호
    • /
    • pp.17-24
    • /
    • 2012
  • Recently, flip chip interconnection has been increasingly used in microelectronic assemblies. The common Flip chip interconnection is formed by reflow of the solder bumps. Lead-Tin solders and Tin-based solders are most widely used for the solder bump materials. However, the flip chip interconnection using these solder materials cannot be applied to temperature-sensitive components since solder reflow is performed at relatively high temperature. Therefore the development of low temperature bonding technologies is required in these applications. A few bonding techniques at low temperature of $150^{\circ}C$ or below have been reported. They include the reflow soldering using low melting point solder bumps, the transient liquid phase bonding by inter-diffusion between two solders, and the bonding using low temperature curable adhesive. This paper reviews various low temperature bonding methods.

유기 패키징 기판에서의 BTO 기반의 임베디드 MIM 커패시터의 특성 분석 (Characterization of BTO based MIM Capacitors Embedded into Organic Packaging Substrate)

  • 이승재;이한성;박재영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1504-1505
    • /
    • 2007
  • In this paper, fully embedded high Dk BTO MIM capacitors have been developed into a multi-layered organic package substrate for low cost RF SOP (System on Package) applications. These embedded MIM capacitors were designed and simulated by using CST 3D EM simulators for finding out optimal geometries and verifying their applicability. The embedded MIM capacitor with a size of $550\;{\times}\;550\;um^2$ has a capacitance of 5.3pF and quality factor of 43 at 1.5 GHz, respectively. The measured performance characteristics were well matched with 3D EM simulated ones. Equivalent circuit parameters of the embedded capacitors were extracted for making a design library.

  • PDF

식품포장의 항산화제 첨가 플라스틱의 용도 (The Applications of Antioxidant Impregnated Polymers to Food Packaging)

  • 이윤석
    • 한국포장학회지
    • /
    • 제8권2호
    • /
    • pp.49-59
    • /
    • 2002
  • 플라스틱 포장재의 주요 기능은 식품을 수송, 보관과정에서 안전하게 보존하는 것이다. 식품과 플라스틱 포장재간의 반응은 식품의 품질과 안전성 문제에 있어서 상당한 이슈가 되고 있는데 이는 주로 플라스틱에 남아있는 잔류용제, 단량체, 첨가물 등이 식품으로 전이되는 문제들이다. 플라스틱 포장재에 항산화제를 첨가하는 것은 필름의 열화는 물론 포장된 식품, 특히 유지가 많은 제품의 산화를 막을 수 있다. 현재 BHT와 같은 항산화제를 플라스틱 포장재에 적용하는 것이 상업화되어 제품의 유통기간을 연장시키는 방법으로 사용되고 있다. Alpha tocopherol은 가장 중요한 자유기 제거제의 하나로 생물 시스템에는 잘 알려져 있는데 이것을 포장재에 사용함으로써 생산자와 소비자 모두 매우 긍정적인 반응을 보이고 있다. Alpha tocopherol은 폴리올레핀계 레진에 적용되어 BHT를 대체하고 있다. 이 연구는 포장재와 제품간의 증발-흡착 메카니즘을 이용한 항산화제의 효과와 그 적용, 그리고 이러한 메카니즘을 예측할 수 있는 분석기법을 설명하였다.

  • PDF

고온동작소자의 패키징을 위한 천이액상확산접합 기술 (Transient Liquid Phase (TLP) Bonding of Device for High Temperature Operation)

  • 정도현;노명환;이준형;김경흠;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제24권1호
    • /
    • pp.17-25
    • /
    • 2017
  • Recently, research and application for a power module have been actively studied according to the increasing demand for the production of vehicles, smartphones and semiconductor devices. The power modules based on the transient liquid phase (TLP) technology for bonding of power semiconductor devices have been introduced in this paper. The TLP bonding has been widely used in semiconductor packaging industry due to inhibiting conventional Pb-base solder by the regulation of end of life vehicle (ELV) and restriction of hazardous substances (RoHS). In TLP bonding, the melting temperature of a joint layer becomes higher than bonding temperature and it is cost-effective technology than conventional Ag sintering process. In this paper, a variety of TLP bonding technologies and their characteristics for bonding of power module have been described.

State-of-the-Art mmWave Antenna Packaging Methodologies

  • Hong, Wonbin
    • 한국전자파학회지:전자파기술
    • /
    • 제24권2호
    • /
    • pp.15-22
    • /
    • 2013
  • Low-Temperature-cofired ceramics (LTCC) antenna packages have been extensively researched and utilized in recent years due to its excellent electrical properties and ease of implementing dense package integration topologies. This paper introduces some of the key research and development activities using LTCC packaging solutions for 60 GHz antennas at Samsung Electronics [1]. The LTCC 60 GHz antenna element topology is presented and its measured results are illustrated. However, despite its excellent performance, the high cost issues incurred with LTCC at millimeter wave (mmWave) frequencies for antenna packages remains one of the key impediments to mass market commercialization of mmWave antennas. To address this matter, for the first time to the author's best knowledge this paper alleviates the high cost of mmWave antenna packaging by devising a novel, broadband antenna package that is wholly based on low-cost, high volume FR4 Printed Circuit Board (PCB). The electrical properties of the FR4 substrate are first characterized to examine its feasibility at 60 GHz. Afterwards a compact multi-layer antenna package which exhibits more than 9 GHz measured bandwidth ($S_{11}{\leq}-10$ dB) from 57~66 GHz is devised. The measured normalized far-field radiation patterns and radiation efficiency are also presented and discussed.

AI Smart Factory Model for Integrated Management of Packaging Container Production Process

  • Kim, Chigon;Park, Deawoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권3호
    • /
    • pp.148-154
    • /
    • 2021
  • We propose the AI Smart Factory Model for integrated management of production processes in this paper .It is an integrated platform system for the production of food packaging containers, consisting of a platform system for the main producer, one or more production partner platform systems, and one or more raw material partner platform systems while each subsystem of the three systems consists of an integrated storage server platform that can be expanded infinitely with flexible systems that can extend client PCs and main servers according to size and integrated management of overall raw materials and production-related information. The hardware collects production site information in real time by using various equipment such as PLCs, on-site PCs, barcode printers, and wireless APs at the production site. MES and e-SCM data are stored in the cloud database server to ensure security and high availability of data, and accumulated as big data. It was built based on the project focused on dissemination and diffusion of the smart factory construction, advancement, and easy maintenance system promoted by the Ministry of SMEs and Startups to enhance the competitiveness of small and medium-sized enterprises (SMEs) manufacturing sites while we plan to propose this model in the paper to state funding projects for SMEs.

RF MEMS 소자 실장을 위한 LTCC 및 금/주석 공융 접합 기술 기반의 실장 방법 (LTCC-based Packaging Method using Au/Sn Eutectic Bonding for RF MEMS Applications)

  • 방용승;김종만;김용성;김정무;권기환;문창렬;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.30-32
    • /
    • 2005
  • This paper reports on an LTCC-based packaging method using Au/Sn eutectic bonding process for RF MEMS applications. The proposed packaging structure was realized by a micromachining technology. An LTCC substrate consists of metal filled vertical via feedthroughs for electrical interconnection and Au/Sn sealing rim for eutectic bonding. The LTCC capping substrate and the glass bottom substrate were aligned and bonded together by a flip-chip bonding technology. From now on, shear strength and He leak rate will be measured then the fabricated package will be compared with the LTCC package using BCB adhesive bonding method which has been researched in our previous work.

  • PDF

종이 앵글 포장재의 재료역학적 특성과 유한요소해석 (Finite Element Analysis and Material Mechanics of Paper Angle)

  • 박종민
    • Journal of Biosystems Engineering
    • /
    • 제30권6호통권113호
    • /
    • pp.347-353
    • /
    • 2005
  • Paper angle, environment friendly packaging material, has been mainly used as an edge protector, But, in the future, paper angle will be applied to package design of heavy product such as strength reinforcement or unit load system (ULS). Therefore. understanding of buckling behavior fur angle itself, compression strength and quality standard are required. The objectives of this study were to characterize the buckling behavior by theoretical and finite element analysis, and to develop compression strength model by compression test for symetric and asymetric paper angle. Based on the result of theoretical and finite element analysis, as applied load level was bigger and/or the length of angle was longer, incresing rate of buckling of asymmetric paper angle was higher than that of symmetric paper angle. Decreasing rate of minimum principal moment of inertia significantly increased as the extent of asymmetric angle increased, and buckling orientation of angle was open- direction near the small web. Incresing rate of maximum compression strength (MCS) for thickness of angle decreased as the web size increased in symmetric angle. MCS of asymmetric angle of 43${\times}$57 and 33${\times}$67 decreased $15{\~}18\%$ and $65{\~}78\%$, and change of buckling increased $12{\~}13\%$ and $62{\~}66\%$, respectively.