• Title/Summary/Keyword: Paper ash

Search Result 685, Processing Time 0.024 seconds

The Effect of Particle Size Distribution on the Physical and Optical Properties of Cenosphere (세노스피어(Cenosphere)의 입도 분포에 따른 물리적 특성 및 광학적 특성 평가)

  • Lee, Won-Jun;Hwang, Hae-Jin;Han, Kyu-Sung;Hwnag, Kwang-Taek;Cho, Woo-Suk;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.353-358
    • /
    • 2017
  • Recycled cenosphere, which is a hollow shaped particle from fly ash, has become attractive as a building material due to its light weight and excellent heat insulation and soundproof properties. In this paper, we investigated the effect of cenosphere size on the physical and optical properties. High brightness of cenosphere as raw material is required for a wide range of ceramics applications, particularly in fields of building materials and industrial ceramic tiles. Cenospheres were sorted by particle size; the microstructure was analyzed according to the cenosphere size distribution. Cenospheres were generally composed of quartz, mullite, and amorphous phase. Colour measurement corresponding to chemical composition revealed that the contents of iron oxide and carbon in the cenospheres were the major factors determining the brightness of the cenospheres.

The Qualities of Molded Charcoal for Kindling Molded-Coal-Briquette (구멍탄착화용 성형탄의 품질)

  • Jo Jae-myeong;Kim Young-nyon;Kim Suk-goo;Cho Sung-taig;Kong Young-to
    • Journal of Korea Foresty Energy
    • /
    • v.1 no.2
    • /
    • pp.28-33
    • /
    • 1981
  • To survey the present qualities of the molded and to present the base line of qualities in manufacture, the charcoal collected at 27 makers through the nation were examined. The molded charcoal examined in this paper, which is made by carbonization and molding of sawdusts from wood industries, is widely used to kindle holed-coal-briquette. The holed-coal-briquette is utilized in cooking and heating as primary energy source of ordinary households in this country. The average qualities of molded charcoal was as follows; ash content 13.95$\%$, weight 184.6g, density 0.47, time of kindling holed-coal-briquette 65.4 min., calorie 5,790 kcal/kg. The ten makers produced inferior qualities, that was 37 per cent of the 27 makers examined. The base line of qualities of molded charcoal was defined as follows; ash content below 17$\%$, weight above 175 g, falling strength above 300 mm, calorie above 5,500 kcal/kg.

  • PDF

Improvement in engineering properties of subgrade soil due to stabilization and its effect on pavement response

  • Nagrale, Prashant P.;Patil, Atulya P.
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.257-267
    • /
    • 2017
  • This paper presents laboratory investigation of stabilization of subgrade soil. One type of soil and three types of stabilizers i.e., hydrated lime, class F fly ash and polypropylene fibres are selected in the study. Atterberg limit, compaction, california bearing ratio (CBR), unconfined compressive strength and triaxial shear strength tests are conducted on unstabilized and stabilized soil for varying percentage of stabilizers to analyze the effect of stabilizers on the properties of soil. Vertical compressive strains at the top of unstabilized and stabilized subgrade soil were found out by elasto-plastic finite element analysis using commercial software ANSYS. Strategy for design of optimum pavement section was based on extension in service life (TBR) and reduction in layer thickness (LTR). Extension in service life of stabilized subgrade soil is 6.49, 4.37 and 3.26 times more due to lime, fly ash and fibre stabilization respectively. For a given service life of the pavement, there is considerable reduction in layer thicknesses due to stabilization. It helps in reduction in construction cost of pavement and saving in natural resources as well.

Risk Assessment Framework for Safe Disposal and Reuse of Solidified/Stabilized Wastes (고형화 폐기물의 안정적 처분과 재활용을 위한 환경위해성 평가 체계의 연구)

  • Park, Joo-Yang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • The key part in risk assessments for disposal sites of solidified/stabilized (S/S) wastes is to predict the contaminant transport from the S/S wastes to the environment under dynamically changing field conditions after characterizing chemical leaching properties of the ash, to evaluate the risk from the predictions, and finally to decide the risk is acceptable. In this paper, a risk assessment framework for disposal and reuse of S/S wastes was developed considering two limiting cases of contaminant leaching. Two types of waste characterization procedures that can determine waste-specific variables for the two limiting cases were developed and verified by applying them to a landfill site of the Municipal Solid Waste incinerator ash solidified/stabilized by cement.

  • PDF

Use of multi-hybrid machine learning and deep artificial intelligence in the prediction of compressive strength of concrete containing admixtures

  • Jian, Guo;Wen, Sun;Wei, Li
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.11-23
    • /
    • 2022
  • Conventional concrete needs some improvement in the mechanical properties, which can be obtained by different admixtures. However, making concrete samples costume always time and money. In this paper, different types of hybrid algorithms are applied to develop predictive models for forecasting compressive strength (CS) of concretes containing metakaolin (MK) and fly ash (FA). In this regard, three different algorithms have been used, namely multilayer perceptron (MLP), radial basis function (RBF), and support vector machine (SVR), to predict CS of concretes by considering most influencers input variables. These algorithms integrated with the grey wolf optimization (GWO) algorithm to increase the model's accuracy in predicting (GWMLP, GWRBF, and GWSVR). The proposed MLP models were implemented and evaluated in three different layers, wherein each layer, GWO, fitted the best neuron number of the hidden layer. Correspondingly, the key parameters of the SVR model are identified using the GWO method. Also, the optimization algorithm determines the hidden neurons' number and the spread value to set the RBF structure. The results show that the developed models all provide accurate predictions of the CS of concrete incorporating MK and FA with R2 larger than 0.9972 and 0.9976 in the learning and testing stage, respectively. Regarding GWMLP models, the GWMLP1 model outperforms other GWMLP networks. All in all, GWSVR has the worst performance with the lowest indices, while the highest score belongs to GWRBF.

Study of strength and microstructure of a new sustainable concrete incorporating pozzolanic materials

  • Grzegorz Ludwik Golewski
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.431-441
    • /
    • 2023
  • The aim of this paper is to present a new sustainable ternary and quaternary binder by partially replacing ordinary Portland cement (OPC) with different percentages of supplementary cementitious materials. The motivation is to reduce our dependency on OPC to reduce CO2 emission and carbon foot print. As the main substitute for the OPC, siliceous fly ash was used. Moreover, silica fume and nanosilica were also used. During examinations the main mechanical parameters of concrete composites, i.e., compressive strength (fcm) and splitting tensile strength (fctm) were assed. The microstructure of these materials was also analysed. It was found that the concrete incorporating pozzolanic materials is characterized by a well-developed structure and has high values of mechanical parameters. The quaternary concrete containing: 80% OPC, 5% FA, 10% SF, and 5% nS have shown the best results in terms of good strength parameters as well as the most favourable microstructure, whereas the worst mechanical parameters with microstructure containing microcracks at phase interfaces were characterized by concrete with more content of FA additive in the concrete mix, i.e., 15%. Nevertheless, all concretes made on quaternary binders had better parameters than the reference one. It can be stated that sustainable concrete incorporating pozzolanic materials could be good substitute of ordinary concretes.

A thermal stress and crack study by computer modelling (전산해석에 의한 온도응력 및 온도균열 검토)

  • 문수동;이상호;문한영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.375-380
    • /
    • 2002
  • Tong-young LNG tank is a LNG storage tank of 140,000 kl, and it is composed of Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof. Generally, when concrete temperature arise, the complex thermal stress of inner and outer part can cause serious thermal crack and damage at structure. So in this paper, for the control of this thermal crack, we did the concrete mix design with the base of fly-ash 30% substitute at binder, and through the computer modelling at Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof, we studied the probability of thermal crack by thermal crack index.

  • PDF

Effect of Mix Ingredients on Modulus of Elasticity of High-Strength Concrete (고강도 콘크리트의 탄성계수에 미치는 배합재료의 영향 평가)

  • 손유신;이승훈;김규동;장일영;박훈규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.31-36
    • /
    • 2001
  • This paper report the effects of mix ingredients on the modulus of elasticity of high-strength concrete. The test of 284 cylinder specimens are conducted for type I with 10% replacement of fly-ash cement concretes. Different water-binder ratio, amounts of water and coarse aggregate as variables were investigated. And also analyzed it statistically by using SAS.

  • PDF

Relation of Concrete Setting Characteristic and Lateral Pressure in Mass Concrete Wall (매스콘크리트 벽체에서 콘크리트 응결 특성과 측압과의 관계)

  • 박찬규;유재현;백승준;정재홍;진용만
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.935-938
    • /
    • 2001
  • This paper reports the relation of concrete setting characteristic and lateral pressure in mass concrete wall such as side wall of LNG underground storage tank. In order to estimate the lateral pressure, initial setting time of low heat cement concrete with type of mineral admixture was measured for three concrete mixtures(W/P=41.6%) containing limestone powder, fly ash, and slag powder. As a result, the lateral pressure of the concrete containing limestone powder was the smallest than those of other concretes as well as the initial setting time.

  • PDF

Production and Quality Control of Hot Weathered Ready-Mixed High Strength Concrete (서중 고강도 레미콘 제조 및 품질관리)

  • 조일호;한정호;방희상;박기청
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.423-428
    • /
    • 1994
  • High strength concrete was placed at the mass concrete slabs, walls, pillars of RC building from August till August. And the construction is going on now. This paper presents mix design, production, quality control and experience with field application of high strength ready-mixed concrete under hot weathered conditions. It is shown to be possible to produce high strength concrete that has 45MPa compressive strength using superplasticizer and cement replaced with 20% fly-ash with appropriate control.

  • PDF