• 제목/요약/키워드: Paper Heat exchanger

검색결과 480건 처리시간 0.027초

건조기용 타원관 대구경 핀-관 열교환기의 성능특성 (Performance Characteristic of Large Diameter Oval Finned-Tube Heat Exchanger for Dryer)

  • 배경진;차동안;권오경
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.22-27
    • /
    • 2014
  • The objectives of this paper are to obtain an empirical equations regarding the correlations between heat transfer and pressure drop of oval fin-tube heat exchanger having large diameter using wilson plot method. It was difficult to find any recommendable heat transfer and friction factor correlation available for our large diameter experimental cases. Overall heat transfer coefficients are composed of the heat transfer coefficients both inside and outside tubes. The resulting empirical correlations for the Nui and f-factor are given as $Nu_i=0.0146Re^{0.809}Pr^{0.3}$ and $f=4.366Re^{-0.64}$, respectively. The empirical correlations of the Nui and f-factors were developed for the large diameter oval finned-tube heat exchanger as a function of the Reynolds number. As the EG(Ethylene glycol) and air flow rate increases, the heat transfer rate and pressure drop is increased largely.

A Review on the Performance of Fin-and-Tube Heat Exchangers Under Frosting and Defrosting Conditions

  • Kim, Yong-Chan;Lee, Ho-Seong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권3호
    • /
    • pp.152-157
    • /
    • 2005
  • This paper reviews the literature on the performance of fin-and-tube heat exchangers under frosting and defrosting conditions. The effects of frosting and defrosting on the following parameters were discussed: frost growth, overall heat transfer coefficient, surface roughness, and surface characteristics on the heat exchanger. Comparisons of the experimental results and empirical correlations that were obtained from open literature were presented. In addition, a review of the defrosting methods was conducted.

발포금속을 삽입한 밀집형 열교환기 최적 설계 (Optimum Design of a Compact Heat Exchanger with Foam Metal Insertion)

  • 이대영;진재식;강병하
    • 설비공학논문집
    • /
    • 제13권7호
    • /
    • pp.612-620
    • /
    • 2001
  • The optimum design of a heat exchanger with porous media insertion is studied in this paper. It is considered that the aluminum foam metal is inserted in a flat plate channel and air flows through it. The influence of the microstructure of the foam metal on the pressure drop and heat transfer is investigated utilizing previous analytical results and existing correlation equations. Design parameters are identified as the unit-cell size and the ligament thickness of the porous medium, and their effects are examined. The results show that there exists optimum microstructure of the porous media maximizing heat transfer with a constant pressure drop. When the increase in the pressure drop is within a practically acceptable range, the increase in the heat transfer is dominated by the increase in the heat transfer area due to the porous medium insertion. Consequently, among the porous media with a constant pressure drop, the heat transfer is maximized with a microstructure with maximum specific surface area.

  • PDF

열교환기 휜에서의 착상 거동 (Behavior of frost formed on heat exchanger fins)

  • 김정수;이관수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2334-2339
    • /
    • 2008
  • This paper proposes an improved mathematical model for predicting the frosting behavior on a two-dimensional fin considering the heat conduction of heat exchanger fins under frosting conditions. The model consists of laminar flow equation in airflow, diffusion equation of water vapor for frost layer, and heat conduction equation in fin, and these are coupled together. In this model, the change in three-dimensional airside airflow caused by frost growth is accounted for. The fin surface temperature increased toward the fin tip due to the fin heat conduction. On the contrary, the temperature gradient in the airflow direction(x-dir.) is small throughout the entire fin. The frost thickness in the direction perpendicular to airflow, i.e. z-dir., decreases exponentially toward the fin tip due to non-uniform temperature distribution. The rate of decrease of heat transfer in the airflow direction is high compared to that in the z-direction due to more decrease in the sensible and latent heat rate in x-direction.

  • PDF

폐열회수 환기시스템에 사용된 종이 열교환기의 성능에 관한 실험적 연구 (An Experimental Study on Performance of Paper Heat Exchangers for Exhaust Heat Recovery Ventilation System)

  • 정민호;오병길
    • 설비공학논문집
    • /
    • 제24권3호
    • /
    • pp.240-246
    • /
    • 2012
  • The supply and use of exhaust heat recovery ventilation system as effective energy saving equipment has been increasing steadily. The exhaust heat recovery ventilation system can be installed at ceiling of balcony or emergency space. However, ventilation system can not be installed at emergency space because where have to remain as empty space by law. Therefore, the proper installation space of ventilation system is needed. In this study, to install heat recovery ventilation system in the light weight wall, thickness of heat exchanger was assembled below 140 mm. One or two paper heat exchangers were installed in the ventilation system. The efficiency of heat recovery was analyzed through performance experiment on case of cooling and heating mode.

Numerical Modeling of Regenerative Rotary Heat Exchanger: A Review

  • Baruah, Netramoni;Prasanna, Kumar G.V.
    • Journal of Biosystems Engineering
    • /
    • 제42권1호
    • /
    • pp.44-55
    • /
    • 2017
  • Background: Heat recovery is one of the prominent ways to save a considerable amount of conventional fossil fuel and minimize its adverse effects on the environment. The rotary heat exchanger is one of the most effective and efficient devices for heat recovery or heat exchanging purposes. It is a regenerative type of heat exchanger, which has been studied and used for many heat recovery purposes. However, regenerative thermal wheels have been mostly used as heat recovery systems in buildings. For modeling a rotary regenerator, it is very important to numerically consider all the factors involved, such as effectiveness, rotational speed, geometrical size and shape, and pressure drop (${\Delta}p$). In recent times, several researchers have actively studied the rotary heat exchangers, both theoretically and experimentally. Reviews: In this paper different advances in the numerical modeling of regenerative rotary heat exchangers in relation to fluid flow and heat transfer have been discussed. Researchers have indicated that the effectiveness of the regenerative rotary heat exchanger depends on various factors including, among many others, rotational speed, rotational period and combustion power. It is reported that with the increase of periodic rotation the deviation of theoretical results from the experimental result increases. The available literature indicates that regenerative heat exchangers are having relatively more effectiveness (60-80%), compared to other heat exchangers. It is also observed that the finite difference method and finite volume methods are mostly used for discretizing the heat transfer governing equations, under some assumptions. Research also indicates that for the effectiveness calculation the ${\varepsilon}-NTU$ method is the most popular and convenient.

에어컨 실외기용 휜-관 직교형 열교환기의 열, 유동 해석 및 휜 성능 개선을 위한 연구 (Flow and heat transfer analysis for the performance improvement of cross-flow fin-tube heat exchangers)

  • 안진수;최도형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.183-189
    • /
    • 2004
  • The flow and the heat transfer about the cross-flow fin-tube heat exchanger in an out-door unit of a heat pump system has been numerically Investigated. Using the general purpose analysis code, FLUENT, the Navier-Stokes equations and the energy equation are solved for the three dimensional computation domain that encompasses multiple rows of the fin-tube. The temperature on the fin and tube surface is assumed constant but compensated later through the fin efficiency when predicting the heat-transfer rate. The contact resistance is also taken into consideration. The flow and temperature fields for a wide range of inlet velocity and fin-tube arrangements are examined and the results are presented in the paper. The details of the flow are very well captured and the heat transfer rate for a range of inlet velocity is in excellent agreement with the measured data. The flow solution provides the effective permeability and the inertial resistance factor of the heat exchanger if the exchanger were to be approximated by the porous medium. This information is essential in carrying out the global flow field calculation which, in turn, provides the inlet velocity lot the microscopic temperature-field calculation of the heat exchanger unit.

  • PDF

상온 능동형 자기 재생 냉동기의 개발 (Development of the active magnetic regenerative refrigerator for room temperature application)

  • 박인명;김영권;정상권
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권3호
    • /
    • pp.60-64
    • /
    • 2012
  • In this paper, an investigation of a room temperature active magnetic regenerative refrigerator is carried out. Experimental apparatus includes two active magnetic regenerators containing 186 g of Gd spheres. Four E-type thermocouples are installed inside the Active magnetic regenerator(AMR) to observe the instantaneous temperature variation of AMR. Both warm and cold heat exchangers are designed for large temperature span. The cold heat exchanger, which separates the two AMRs, employs a copper tube with length of 80 mm and diameter of 6.35 mm. In order to minimize dead volume between the warm heat exchanger and AMRs, the warm heat exchangers are located close to the AMRs. The deionized water is used as a heat transfer fluid, and maximum 1.4 T magnetic field is supplied by Halbach array of permanent magnets. The AMR plate, which contains the warm and the cold heat exchangers and the AMRs, has reciprocating motion using a linear actuator and each AMR is alternatively magnetized and demagnetized by a Halbach array of permanent magnet. Since the gap of the Halbach array of permanent magnets is 25 mm and two warm heat exchangers have the motion through it, a compact printed circuit heat exchanger (PCHE) is used as a warm heat exchanger. A maximum no-load temperature span of 26.8 K and a maximum cooling power of 33 W are obtained from the fabricated Active Magnetic Regenerative Refrigerator (AMRR).

발전소 열교환기에서의 유동유발 진동저감 (Reduction of Flow Induced Vibration in the Heat Exchanger of Thermal Power Plant)

  • 장한기;김승한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.633-638
    • /
    • 2000
  • This paper reports an example of flow-induced vibration in a very large plant and the whole procedure of reducing the vibration. During the operation of flue gas desurfurization unit of the thermal power plant, serious vibration occurred at all around the unit. The worst vibration was recorded on the heat exchanger surface, which weighed 180 tones, as 17.8 m/$s^2$ in vibration amplitude at 34Hz. To identify the vibration, frequency analysis on the response vibration, the expected excitation force and the system resonance was executed. This investigation revealed that the cause of the vibration was vortex shedding from the circular pipes in the heat exchanger. Vortices from the pipes excited acoustic resonance in the heat exchanger room, which, in turn, made the structure vibrate. Through inserting the baffles between the pipes, which had an effect of cutting the acoustic wave at resonance frequency, the vibration was eliminated dramatically.

  • PDF

음향방출기법을 이용한 열교환기 누설 검출 시스템 개발 (Development of Leak Detection System of Heat Exchanger using Acoustic Emission Technique)

  • 이민래;이준현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.65-71
    • /
    • 2001
  • In this paper, acoustic omission technique(AE) has been applied to detect leak for heat exchanger by analyzing the characteristics of signal obtained from leak. It was confirmed that the characteristics of the signal generated by the turbulence of gas in the heat exchanger is narrow band signal having between 130-250KHz. Generally, the amplitude of leak signal is increased as the leak size increasing, but showed no significant change at frequency characteristic. Leak source location can be found by searching for the point of highest signal amplitude by comparing wi th several fired sensors.

  • PDF