• Title/Summary/Keyword: Panoramic System

Search Result 138, Processing Time 0.024 seconds

The combination of a histogram-based clustering algorithm and support vector machine for the diagnosis of osteoporosis

  • Kavitha, Muthu Subash;Asano, Akira;Taguchi, Akira;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • v.43 no.3
    • /
    • pp.153-161
    • /
    • 2013
  • Purpose: To prevent low bone mineral density (BMD), that is, osteoporosis, in postmenopausal women, it is essential to diagnose osteoporosis more precisely. This study presented an automatic approach utilizing a histogram-based automatic clustering (HAC) algorithm with a support vector machine (SVM) to analyse dental panoramic radiographs (DPRs) and thus improve diagnostic accuracy by identifying postmenopausal women with low BMD or osteoporosis. Materials and Methods: We integrated our newly-proposed histogram-based automatic clustering (HAC) algorithm with our previously-designed computer-aided diagnosis system. The extracted moment-based features (mean, variance, skewness, and kurtosis) of the mandibular cortical width for the radial basis function (RBF) SVM classifier were employed. We also compared the diagnostic efficacy of the SVM model with the back propagation (BP) neural network model. In this study, DPRs and BMD measurements of 100 postmenopausal women patients (aged >50 years), with no previous record of osteoporosis, were randomly selected for inclusion. Results: The accuracy, sensitivity, and specificity of the BMD measurements using our HAC-SVM model to identify women with low BMD were 93.0% (88.0%-98.0%), 95.8% (91.9%-99.7%) and 86.6% (79.9%-93.3%), respectively, at the lumbar spine; and 89.0% (82.9%-95.1%), 96.0% (92.2%-99.8%) and 84.0% (76.8%-91.2%), respectively, at the femoral neck. Conclusion: Our experimental results predict that the proposed HAC-SVM model combination applied on DPRs could be useful to assist dentists in early diagnosis and help to reduce the morbidity and mortality associated with low BMD and osteoporosis.

A Study on the Establishment of a Production Pipeline Imported 3D Computer Graphics for Clay Characters (3D 컴퓨터그래픽을 도입한 클레이 캐릭터 제작 공정 개발에 관한 연구)

  • Kim, Jung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.9
    • /
    • pp.1245-1257
    • /
    • 2008
  • The establishment of a production pipeline imported 30 computer graphics is suggested in this paper to improve the efficiency of existing production pipeline of clay animation. The point is that the process of building clay characters that remains labor intensive among the existing procedures is replaced by the process of creating computer generated characters. In order to create characters out of clay by means of 30 computer graphics, a diffuse map and displacement map are made of an oil-based clay according to the UVW coordination of polygon modeling, which is the same color and kind of clay used to make a clay character. In addition, a panoramic HDRI recording system is developed to record the lighting information of shooting environment for miniature sets, which is imported in 3D computer graphic tools as digital light source. On account of the new production pipeline, a hyper realistic rendering image can be produced, and at the same time it improves the traditional pipeline of stop motion animation that is know-how based procedure of a complete artist by the engineering approach to the automatic process.

  • PDF

Accuracy of various imaging methods for detecting misfit at the tooth-restoration interface in posterior teeth

  • Francio, Luciano Andrei;Silva, Fernanda Evangelista;Valerio, Claudia Scigliano;Cardoso, Claudia Assuncao e Alves;Jansen, Wellington Correa;Manzi, Flavio Ricardo
    • Imaging Science in Dentistry
    • /
    • v.48 no.2
    • /
    • pp.87-96
    • /
    • 2018
  • Purpose: The present study aimed to evaluate which of the following imaging methods best assessed misfit at the tooth-restoration interface: (1) bitewing radiographs, both conventional and digital, performed using a photostimulable phosphor plate (PSP) and a charge-coupled device (CCD) system; (2) panoramic radiographs, both conventional and digital; and (3) cone-beam computed tomography (CBCT). Materials and Methods: Forty healthy human molars with class I cavities were selected and divided into 4 groups according to the restoration that was applied: composite resin, composite resin with liner material to simulate misfit, dental amalgam, and dental amalgam with liner material to simulate misfit. Radiography and tomography were performed using the various imaging methods, and the resulting images were analyzed by 2 calibrated radiologists. The true presence or absence of misfit corresponding to an area of radiolucency in regions subjacent to the esthetic and metal restorations was validated with microscopy. The data were analyzed using a receiver operating characteristic (ROC) curve, and the scores were compared using the Cohen kappa coefficient. Results: For bitewing images, the digital systems (CCD and PSP) showed a higher area under the ROC curve (AUROC) for the evaluation of resin restorations, while the conventional images exhibited a larger AUROC for the evaluation of amalgam restorations. Conventional and digital panoramic radiographs did not yield good results for the evaluation of resin and amalgam restorations (P<.05). CBCT images exhibited good results for resin restorations(P>.05), but showed no discriminatory ability for amalgam restorations(P<.05). Conclusion: Bitewing radiographs (conventional or digital) should be the method of choice when assessing dental restoration misfit.

An algorithm of the natural view transition in the panoramic image based navigation using Fast Fourier Transform Techniques (파노라마 영상 기반 네비게이션에서 FFT 기술을 이용한 자연스러운 장면 전환 알고리즘)

  • Kim, Dae-Hyun;Choi, Jong-Soo;Kim, Tae-Eun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.5
    • /
    • pp.561-566
    • /
    • 2003
  • This paper proposes a new algorithm that generates smooth and realistic transition views from one viewpoint to another view point on the panorama based navigation system. The proposed algorithm is composed with two steps. One is prewarping that aligns the viewing direction in two panorama image, the other is bidirectional disparity morphing (BDM) that generates the intermediate scene from the aligned panorama images. For the prewarping, first of all, we compute the phase correlation between two images in order to get the information such as the displacement, rotation, and scale. Then we align the original images using these information. As soon as finishing the prewarping, we compute the block based disparity vectors (DVs) and smooth them using the two occluding patterns. As we apply these DVs to the BDM, we can get the elaborate intermediate scenes. We make an experiment on the proposed algorithm with real panoramic images and we can get the satisfactory results.

3D Vision-Based Local Path Planning System of a Humanoid Robot for Obstacle Avoidance

  • Kang, Tae-Koo;Lim, Myo-Taeg;Park, Gwi-Tae;Kim, Dong W.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.879-888
    • /
    • 2013
  • This paper addresses the vision based local path planning system for obstacle avoidance. To handle the obstacles which exist beyond the field of view (FOV), we propose a Panoramic Environment Map (PEM) using the MDGHM-SIFT algorithm. Moreover, we propose a Complexity Measure (CM) and Fuzzy logic-based Avoidance Motion Selection (FAMS) system to enable a humanoid robot to automatically decide its own direction and walking motion when avoiding an obstacle. The CM provides automation in deciding the direction of avoidance, whereas the FAMS system chooses the avoidance path and walking motion, based on environment conditions such as the size of the obstacle and the available space around it. The proposed system was applied to a humanoid robot that we designed. The results of the experiment show that the proposed method can be effectively applied to decide the avoidance direction and the walking motion of a humanoid robot.

Interactive Multiview Contents Authoring System based on MPEG-4 (MPEG-4 기반 대화형 복수시점 영상콘텐츠 저작 시스템)

  • Lee, In-Jae;Ki, Myung-Seok;Kim, Wook-Joong;Kim, Kyu-Heon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.209-212
    • /
    • 2005
  • This paper introduces interactive multi-view contents authoring system based on MPEG-4. The MPEG-4 standard, which aims to provide an object based audiovisual coding tool, has been developed to address the emerging needs from communications, interactive broadcasting as well as from mixed service models resulting from technological convergence. Due to the feature of object based coding, it has been considered that MPEG-4 is the most suitable for interactive broadcasting content production. This feature is suitable for creation of the content which provides multiple views of object or scene in interactive manner. In this paper, we categorize the multi-view visual content into two types: panoramic multi-view content and object multi-view content. And design and implementation of the authoring system for interactive multi-view contents is presented. We believe that the proposed method can be effectively used for further deployment of MPEG-4 content to various interactive applications.

  • PDF

Clinical usefulness of teleradiology in general dental practice

  • Choi, Jin-Woo
    • Imaging Science in Dentistry
    • /
    • v.43 no.2
    • /
    • pp.99-104
    • /
    • 2013
  • Purpose: This study was performed to investigate the clinical usefulness of teleradiology in general dental practice. Materials and Methods: Two hundred and seventy five cases were submitted for inquiry to the case presentation board of the website of The Korean Academy of Oral and Maxillofacial Radiology for a 5 year periods. The diagnosis results of those cases were analyzed according to the disease classification, the correlation with the patient's chief complaint, the necessity of additional examinations or treatments, the image modalities, and the number of dentists inquiring. Results: Differential diagnoses of normal anatomic structures were the most frequently submitted cases, covering 15.6% of all cases. Among 275 cases, 164 cases required no additional treatments or examinations. Panoramic radiographs were the most frequently submitted images, accounting for 248 inquiries. The 275 cases were submitted by 96 dentists. Fifty-two dentists wrote one inquiry, and 44 inquired 2 or more times. The average inquiry number of the latter group was 5.0 cases. Conclusion: A teleradiology system in general dental practice could be helpful in the differential diagnosis of common lesions and reduce unnecessary costs.

Correspondence Estimation for Wide Area Watching Camera System (광역관찰 카메라 시스템을 위한 카메라의 대응관계 계산)

  • 이동휘;최승현;이칠우
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.415-418
    • /
    • 2001
  • The automatic construction of large, high-resolution image mosaics is an active area of reasearch in the fields of photogrammetry, computer vision, image processing, and computer graphics. In this study, we describe a automatic mosaicing method that makes a panorama from images by placing camera in a emitted-grid. In the images captured by cameras, there must be a matched area and the area is in the particular area of the image. Initial transformation matrix, there(ore, is calculated from points searched in the partial area. It is possible to find best transformation matrix by Levenberg-Marquardt method. Finally, each images are multiplied by blending function and stitched by the transformation matrix to complete panoramic image.

  • PDF

New Light Curve Analysis for Large Numbers of Eclipsing Binaries I. Detached and Semi-Detached Binaries

  • Kang, Young-Woon
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.75-80
    • /
    • 2010
  • Several survey observations have produced light curves of more than five thousand eclipsing binaries for last 15 years. Future missions such as the Large Synoptic Survey Telescope (LSST), the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) and Gaia are expected to yield hundreds thousands of new variable stars and eclipsing binaries. Current methods require a week to analyze the light curves of an eclipsing binary for its physical and orbital parameters. The current methods of analyzing the light curves will be inadequate to treat the overwhelming influx of new data. Therefore we developed a new method to treat large numbers of light curves of eclipsing binaries. We tested the new method by analyzing more than one hundred light curves of the detached and semi-detached eclipsing binaries discovered in the Small Magellan Cloud and present their fitted light curves with observations.

Navigation based on Multi Cylindrical Environment Map

  • Park, Youngsup;Hyekyung Ko;Cheungwoon Cho;Kyunghyun Yoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.167.6-167
    • /
    • 2001
  • The cylindrical environment maps of image-based representation methods make high-quality, simple and low-price real-time navigation possible. In this paper, we propose a method to navigate from one viewpoint to the next in the virtual inside space, composed of several cylindrical environment maps. Our system is classified into the two modules. first of all, the panoramic image viewer that employs the rotation and zoom-in/out methods to navigate the virtual inside space, such as the Quicklime VR. The other is smooth real-time navigation using cubic mesh interpolation when the viewpoint moves from one environment map to another in the virtual space.

  • PDF