• 제목/요약/키워드: Panicum Maximum

검색결과 28건 처리시간 0.023초

The Nutritive Value of Mulberry Leaves (Morus alba) and Partial Replacement of Cotton Seed in Rations on the Performance of Growing Vietnamese Cattle

  • Vu, Chi Cuong;Verstegen, M.W.A.;Hendriks, W.H.;Pham, K.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권9호
    • /
    • pp.1233-1242
    • /
    • 2011
  • The in vivo digestibility of mulberry leaves (Morus alba) and the effects of the partial replacement of cotton seed with fresh mulberry leaf in rations on the performance of growing Vietnamese cattle was investigated. For the in vivo digestibility trial, twenty castrated rams of Phanrang breed (a local prolific breed) with an initial weight of 23-25 kg, were first assigned to four groups according to weight and then randomly assigned to one of four dietary treatments to determine digestibility of nutrients in mulberry leaves (M. alba), natural Bermuda grass (Cynodon dactylon), elephant grass (Pennisetum purpureum) and buffalo grass (Panicum maximum cv. TD 58). All forages were cut and chopped daily before being offered (at 120% maintenance) to the sheep. In the feeding trial, 20 Laisind (Vietnam yellow cows${\times}$Red Sindhy bulls) crossbred bulls averaged 18 month old and 184 kg were used to investigate the effect of partial replacement of cottonseed in the diet by mulberry leaves on live weight gain and feed conversion rate. The experiment was a randomized complete block design with four levels of fresh mulberry leaves which varied from 0 to 15% of total dietary dry mater and five animals per treatment over an 84 day period. The in vivo digestion trial showed the superior quality of mulberry leaves compared with the grasses. Chemical analysis indicated that mulberry leaves had the highest CP and the lowest NDF contents (22.3 and 31.1% DM, respectively) among the four forages tested. Digestibility of DM and OM of the mulberry leaf (66.4 and 71.8%, respectively) was also the highest but that of CP (58.2%) and NDF (58.4%) was the lowest of the four forages evaluated (p<0.05). Consequently, the ME value and therefore net energy (NE) and unit feed for lactation (UFL) values of the mulberry leaves, which was estimated from chemical composition and digestibility values, were the highest among the forages investigated in the present study. Results of the feeding trial showed no treatment effect on average daily gain (ADG) of the cattle. The values were 554, 583, 565 and 568 g/d for animals in the diets of 0, 5, 10, and 15% mulberry leaves inclusion, respectively. Total DM intake of the animal was not affected by the treatment when expressed as kg/animal/d. However, when adjusted for metabolic weight of the animal the DM intake was reduced (p<0.05) as whole cottonseed was replaced by mulberry leaves in the ration. When the level of mulberry leaves in the ration increased from 5 to 15% of dietary DM at the expense of whole cottonseed, CP and ME intakes of the cattle were significantly decreased (p<0.05) and the feed to gain ratio reduced by 8 to 14% as compared with the control diet (p<0.05). Mulberry leaf is a good feed ingredient for ruminants because of its high level of crude protein and high digestibility of nutrients and energy. Mulberry leaves can be efficiently used as a source of protein supplement to replace cottonseed, a more expensive animal feeds ingredient, in the diet for Vietnamese cattle.

Effects of Adding Glucose, Sorbic Acid and Pre-fermented Juices on the Fermentation Quality of Guineagrass (Panicum maximum Jacq.) Silages

  • Shao, Tao;Ohba, N.;Shimojo, M.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권6호
    • /
    • pp.808-813
    • /
    • 2004
  • This study was conducted to evaluate the effects of adding glucose (G), sorbic acid (S), pre-fermented juice of epiphytic lactic acid bacteria (FJLB) and their combinations on the fermentation qualities and residual mono-and di-saccharides compositions of guineagrass silage. The additives used in this experiment were 1% glucose, 0.1% sorbic acid and FJLB at a theoretical application rate of 9.0${\times}$105 CFU $g^{-1}$ on the fresh weight basis of guineagrass, respectively. There was a total of eight treatments in this experiment: (1) C (without additives), (2) FJLB, (3) S, (4) G, (5) FJLB+S, (6) FJLB+G, (7) S+G, (8) FJLB+S+G. After 30 days of storage, the silos were opened for chemical analyses. Based on the results, all additives were efficient in improving the fermentation quality of guineagrass silage. This was well indicated by significantly (p<0.05) lower pH and BA content and significantly (p<0.05) higher LA content in the treated silages except for the FJLB than in the C. However, there was only a slight increase in LA for the FJLB as compared with the C, which might be due to the low WSC content of the original guineagrass (34.4 g $kg^{-1}$). When the FJLB+S and FJLB+G were added, there were significant (p<0.05) decreases in pH and significant (p<0.05) increases in LA as compared with the FJLB alone. This indicated that the G, S and FJLB were of synergestic effects on the silage fermentation quality. The G combination treatments including the G alone showed large improvements in the fermentation quality as compared with the treatments without the G. This suggested that adding fermentable substrates (G) to plant materials such as guineagrass, which contain low WSC, intermediate population of epiphytic LAB, CP and DM content, is more important and efficient for improving the fermentation quality of silages than adding a number of species of domestic LAB (FJLB) and aerobic bacteria inhibitor (S).

Effect of Ensiling Density on Fermentation Quality of Guineagrass (Panicum maximum Jacq.) Silage during the Early Stage of Ensiling

  • Shao, Tao;Wang, T.;Shimojo, M.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권9호
    • /
    • pp.1273-1278
    • /
    • 2005
  • This study is to evaluate the effect of different levels of ensiling density on the fermentation quality of guineagrass silages during the early stage of ensiling. Guineagrass at the milky ripe stage was chopped and ensiled into a small-scale laboratory silo at two ensiling density levels (high density at 95 g/silo and low density at 75 g/silo). Three silos per level were opened after six ensiling periods (0.5, 1, 1.5, 2, 3 and 7 days of ensiling) and the fermentation qualities were analyzed. Within the initial 1.5 days of ensiling there were not significant (p>0.05) differences in the fermentation qualities between two density levels silages, and an almost constant pH and no or only small amounts of lactic acid, acetic acid and total volatile fatty acids were detected. However, the high density silage significantly (p<0.05) increased the rate and extent of fermentation after 1.5 days of ensiling, which was well reflected in significantly (p<0.05) faster and larger pH decline and lactic acid production at each elapsed time as compared with the low density silage. This resulted in significantly (p<0.05) lower finial pH and significantly (p<0.05) higher lactic acid content at the end of the experiment. Moreover, there was higher AA content relative to LA in both the H-D and L-D silages during the full fermentation course, and resulted in the AA-type silage. There were generally somewhat or significantly (p<0.05) higher acetic acid, volatile fatty acids and ammonia-N/total nitrogen in the high density silage than in the low density silage during the initial 3 days of ensiling. However, there were higher (p>0.05) ammonia-N/total nitrogen and significantly (p<0.05) higher butyric acid content in the low density silage at day 7 of ensiling. The silages of two density levels showed an initial increase in glucose between 0.5 and 1 day for the high density silage and between 1 and 1.5 days for the low density silage, respectively, thereafter showed a large decrease until the end of the experiment. There were not large differences (p>0.05) in ethanol content between the low density and high density silages that showed small amounts within initial 3 days of ensiling. However, the low density silage had a significantly (p<0.05) higher ethanol content than the high density silage at the end of experiment. From the above results it was suggested that the increase in ensiling density was an effective method to improve the fermentation quality, especially for tropical grasses.

Effect of Nitrogen Fertilization on Oxalate Content in Rhodesgrass, Guineagrass and Sudangrass

  • Rahman, M.M.;Yamamoto, M.;Niimi, M.;Kawamura, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권2호
    • /
    • pp.214-219
    • /
    • 2008
  • An experiment was conducted to evaluate the effects of nitrogen (N) level on the dry matter (DM) yield, N concentration and oxalate content of some tropical grasses, namely Rhodesgrass (Chloris gayana), Guineagrass (Panicum maximum) and Sudangrass (Sorghum vulgare). Three levels of N as urea were applied (Standard- 260, $Standard{\times}2$- 540 and$Standard{\times}4$- 1,060 kg N/ha for Rhodesgrass; Standard- 380, $Standard{\times}2$- 770 and $Standard{\times}4$- 1,570 kg N/ha for Guineagrass and Sudangrass) in a completely randomized design and grasses were harvested twice at approximately two-month intervals. Dry matter yield tended to be higher with increased rate of N fertilizer in all species, while further additional N ($Standard{\times}2$ or $Standard{\times}4$) did not significantly (p>0.05) further increase DM yield, when compared with the Standard level of N fertilizer application. There was also a trend towards higher N concentration in plants as N fertilization increased in all species and it was increased significantly in Rhodesgrass and Sudangrass (p<0.05 or p<0.01, respectively). Further additional N ($Standard{\times}2$ or $Standard{\times}4$) application showed no significant (p>0.05) differences on oxalate content in plant tissue within species, when compared with the Standard level of N. The Rhodesgrass contained 0.11, 0.13 and 0.15% soluble oxalate and 0.23, 0.25 and 0.27% total oxalate with Standard, $Standard{\times}2$ and $Standard{\times}4$ level of N application, respectively. The Guineagrass contained 0.54, 0.50 and 0.42% soluble oxalate and 1.60, 1.56 and 1.45% total oxalate with Standard, $Standard{\times}2$ and $Standard{\times}4$ level of N application, respectively. The Sudangrass contained 0.06, 0.15 and 0.12% soluble oxalate and 0.22, 0.22 and 0.21% total oxalate with Standard, $Standard{\times}2$ and $Standard{\times}4$ level of N application, respectively The results from this study suggest that these grasses do not use further addition of N fertilizer ($Standard{\times}2$ or $Standard{\times}4$) to form high content of oxalate salts, when compared with the Standard level of N. In addition, the levels of oxalate present with these grasses are quite low as far as toxicity to animals is concerned.

Nutritive Value and Utilization of Three Grass Species by Crossbred Anglo-Nubian Goats in Samoa

  • Aregheore, Eroarome Martin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권10호
    • /
    • pp.1389-1393
    • /
    • 2001
  • A study was carried out to investigate the nutritive value and utilization of three grass species, batiki grass (lschaemum aristatum var. indicum), guinea grass (Panicum maximum) and signal grass (Bracharia decumbens) by growing goats. Eighteen growing crossbred goats $(Anglo-Nubian{\times}Fiji\;local)$ of between 9-11 months of age and pre-trial average live weight of $9.50{\pm}1.60kg$ were divided on the basis of weight to three treatment groups in a completely randomized design. The grasses constituted the diets and they were harvested fresh and chopped into pieces before they were offered to the goats. Chemical composition of the grasses, DMI, body weight gain (BWG) and apparent nutrient digestibility coefficients were measured. The grasses had similar DM content. The CP content of the grasses was in the range of 8.3-11.2%. Crude fiber (CF) content was between 30.9-35.2%. Ether extract (EE) was low with a range of 1.2-1.8%. Nitrogen free extract (NFE) was similar (40.9%) for batiki and guinea grasses, while signal grass had more NFE content (51.1%). The grasses are good sources of minerals (ash). OM content was higher in signal grass while guinea and batiki grasses had similar OM content. The goats on signal grass had higher DMI than those on batiki and guinea grasses (p<0.05). The goats on batiki grass had lower average BWG (p<0.05) than those on guinea and signal grasses. Nutrients digestibility were significantly (p<0.05) higher in the goats on signal grass compared to those on guinea and batiki grasses. The goats on guinea grass were better (p<0.05) in the digestibility of CP, OM, NFE and ME than those on batiki grass. However, goats on batiki were significantly better (p<0.05) in digestibility of CF than those on guinea grass. Signal and guinea grasses had more DCP than batiki grass. DE was lower in batiki grass (p<0.05) than in guinea and signal grasses. There was no significant difference (p>0.05) between batiki and guinea grasses in TON. Data obtained in this experiment demonstrated that signal grass is better than guinea and signal in the nutrition of growing goats in the tropical environment of Samoa. It had the highest nutritive value, better apparent digestibility coefficients which have better growth rate and feed efficiency. In ranking, signal grass was better than guinea and batiki grasses, while guinea grass was better than batiki in nutritive value in the parameters measured. For future pasture establishment in Samoa, signal grass is recommended for consideration because of its higher nutritive value as a replacement for batiki, the most predominant grass.

Nutritive Value of Grasses in Semi-arid Rangelands of Ethiopia: Local Experience Based Herbage Preference Evaluation versus Laboratory Analysis

  • Keba, Habtamu T.;Madakadze, I.C.;Angassa, A.;Hassen, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권3호
    • /
    • pp.366-377
    • /
    • 2013
  • We examined the nutritive value of common grass species in the semi-arid rangelands of Borana in southern Ethiopia using local experience based herbage preference (LEBHP) perception and laboratory techniques. Local pastoralists in the study area were asked to identify common grass species and rank them according to the species' preferences and palatability to cattle. The pastoralists listed a total of 15 common grass species which were then sampled during the main rain and cold dry seasons and analyzed for crude protein (CP), Neutral Detergent Fiber (NDF), Acid Detergent Fiber (ADF) and ash content to verify pastoralists' claim regarding the quality of individual species. The relative feed value (RFV) and dry matter digestibility (DMD) were also calculated using NDF and ADF contents. Spearman's rank correlation was used to examine possible relationships between laboratory results and pastoralists' experience on grass quality. Cenchrus ciliaris, Chrysopogon aucheri, Digitaria milanjiana, Eragrostis papposa and Panicum maximum were the top five species based on LEBHP perception. There were indications of inconsistency in terms of LEBHP perception among the different pastoral communities. The chemical composition of all grass species showed significant (p<0.05) variation between sites, seasons and species. The results showed that the CP values for the Borana rangelands were in the range of 8.7% in the main rain season to 5.1% for the cold dry season. The fiber constituents were relatively low in the main rain season compared to the cold dry season. Overall, Digitaria milanjiana had the highest CP (16.5%) content, while the least was recorded with Heteropogon contortus (10.8) and Aristida adoensis (9.8%) during the main rain season. It seems that the spatial variability of landscapes within the wider geographical regions, soil properties and texture, and land-use patterns probably contributed to site differences in species quality. Generally, the RFV of individual grass species was significantly (p<0.05) varied between and within sites. The ranking of species by pastoralists according to their preferences by cattle was highly correlated with the chemical composition of laboratory results of individual grass species with 'r' values for CP (0.94), ash (0.95), NDF (-0.98), ADF (-0.93) and ADL (-0.93). We suggest the complimentary use of LEBHP and laboratory techniques in evaluating the nutritive quality of rangeland forage species for sustainable animal production.

Voluntary Intake and Digestibility of Fresh, Wilted and Dry Leucaena (Leucaena leucocephala) at Four Levels to a Basal Diet of Guinea Grass (Panicum maximum)

  • Aregheore, Eroarome Martin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권8호
    • /
    • pp.1139-1146
    • /
    • 2002
  • Sixty crossbred Anglo-Nubian goats (growing females), 18-24 mo of age, with a mean pre-experimental live weight of $20.9{\pm}0.44kg$ were used to investigate voluntary dry matter intake (DMI) and digestibility of supplements of Leucaena leucocephala (LL) leaves to a basal diet of guinea grass. The experiment was a 3 forms of presentation: fresh, wilted and $dry{\times}4$ levels of supplementation: 10, 20, 30 and 40% of total forage allowance with LL leaves. The goats were assigned based on weight and age to one of the twelve diets in a randomized manner and each level had five animals (replicates) per diet for 56 days. The form of presentation of LL leaves had effects on dry matter (DM) and nutrient composition. DM and NDF were higher in the dry LL leaves (p<0.05). In the diets, CP increased as the level of supplementation with LL leaves increased (p<0.05). Mean CP was similar in the fresh ($14.8{\pm}3.5%$), wilted ($14.3{\pm}3.3%$) and dry forms ($13.9{\pm}3.1%$). Neutral detergent fibre (NDF) decreased linearly (p<0.05) with increase in levels of supplementation. Organic matter (OM) followed the trend of CP concentration (p<0.05). Drying was observed to reduce the availability of CP at the different levels of supplementation and subsequently this affected the NDF of the diets. DM intake of the goats on the fresh and wilted LL leaves was significantly higher (p<0.05) than in those on the dry LL leaves. DM intake of the basal diet was observed to decrease as the level of supplementation (p<0.05) increased regardless of the form of presentation of LL. Growth rate was best (p<0.05) on the fresh form followed by wilted and the least in the dry form. Growth rate decreased linearly (p<0.05) with increase in the level of supplementation in the dry form. The form of presentation and level of supplementation influenced DM, CP and OM digestibility (p<0.05). Except for NDF, the digestibility of DM, CP and OM were better (p<0.05) in the goats on fresh LL leaves compared to the wilted and dry leaves. Based on the data on DMI, growth rate and apparent nutrient digestibility coefficients, the results suggest that LL leaves is best utilized when fed fresh or wilted to goats. In the dry form of presentation, the best level of supplementation without a reduction in voluntary DMI and growth rate is the 20%. In the fresh and wilted form, LL leaves could be fed up to the 40% level with improved DMI, growth rate and nutrient utilization.

Evaluation of forage production, feed value, and ensilability of proso millet (Panicum miliaceum L.)

  • Wei, Sheng Nan;Jeong, Eun Chan;Li, Yan Fen;Kim, Hak Jin;Ahmadi, Farhad;Kim, Jong Geun
    • Journal of Animal Science and Technology
    • /
    • 제64권1호
    • /
    • pp.38-51
    • /
    • 2022
  • Whole-plant corn (Zea may L.) and sorghum-sudangrass hybrid [Sorghum bicolor (L.) Moench] are major summer crops that can be fed as direct-cut or silage. Proso millet is a short-season growing crop with distinct agronomic characteristics that can be productive in marginal lands. However, information is limited about the potential production, feed value, and ensilability of proso millet forage. We evaluated proso millet as a silage crop in comparison with conventional silage crops. Proso millet was sown on June 8 and harvested on September 5 at soft-dough stage. Corn and sorghum-sudangrass hybrid were planted on May 10 and harvested on September 10 at the half milk-line and soft-dough stages, respectively. The fermentation was evaluated at 1, 2, 3, 5, 10, 15, 20, 30, and 45 days after ensiling. Although forage yield of proso millet was lower than corn and sorghum-sudangrass hybrid, its relative feed value was greater than sorghum-sudangrass hybrid. Concentrations of dry matter (DM), crude protein, and water-soluble carbohydrate decreased commonly in the ensiling forage crops. The DM loss was greater in proso millet than those in corn and sorghum-sudangrass hybrid. The in vitro dry matter digestibility declined in the forage crops as fermentation progressed. In the early stages of fermentation, pH dropped rapidly, which was stabilized in the later stages. Compared to corn and sorghum-sudangrass hybrid, the concentration of ammonia-nitrogen was greater in proso millet. The count of lactic acid bacteria reached the maximum level on day 10, with the values of 6.96, 7.77, and 6.95 Log10 CFU/g fresh weight for proso millet, corn, and sorghum-sudangrass hybrid, respectively. As ensiling progressed, the concentrations of lactic acid and acetic acid of the three crops increased and lactic acid proportion became higher in the order of sorghum-sudangrass hybrid, corn, and proso millet. Overall, the shorter, fast-growing proso millet comparing with corn and sorghum-sudangrass hybrid makes this forage crop an alternative option, particularly in areas where agricultural inputs are limited. However, additional research is needed to evaluate the efficacy of viable strategies such as chemical additives or microbial inoculants to minimize ammonia-nitrogen formation and DM loss during ensiling.