• Title/Summary/Keyword: Panel optimization

Search Result 256, Processing Time 0.035 seconds

The Optimization of Indium Zinc Oxide Thin Film Process in Color Filter on Array structure

  • Lee, Je-Hun;Kim, Jin-Suek;Jeong, Chang-Oh;Kim, Shi-Yul;Lim, Soon-Kwon;Souk, Jun-Hyung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1244-1247
    • /
    • 2004
  • For obtaining the best panel quality of color filter on array(COA) architecture in TFF LCD, we investigated the influence of deposition temperature, $O_2$ flow, thickness on the optical transmittance, wet etching and adhesion properties of IZO deposited onto each color photo resist(red, green, blue). Average transmittance of the pixel single layer in the visible range(between 380 and 780nm) was mainly affected by thickness and showed maximum at 1250 ${\AA}$ while the thickness showing peak transparency in each R, G, B wavelength was different. The relation was calculated by using bi-layer transmission and reflectance model, which corresponded to experimental data very well. The adhesion of IZO deposited on each color PR was found to have enhanced value except red PR case, compared to that of IZO which was deposited on $SiN_x$. Wet etching pattern linearity was decreased as the thickness increased. The thickness of IZO was one of vital factors in order to optimize overall pixel process for fabricating COA structure.

  • PDF

Process Development for Automotive Hybrid Hood using Magnesium Alloy AZ31B Sheet (마그네슘 합금 AZ31B 판재를 이용한 자동차 하이브리드 후드 개발 프로세스)

  • Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.160-166
    • /
    • 2011
  • Weight reduction while maintaining functional requirements is one of the major goals in the automotive industry. The use of lightweight magnesium alloys offers great potential for reducing weight because of the low density of these alloys. However, the formability and the surface quality of the final magnesium alloy product for auto-body structures are not acceptable without a careful optimization of the design parameters. In order to overcome some of the main formability limitations in the stamping of magnesium alloys, a new approach, the so-called "hybrid technology", has been recently proposed for body-in-white structural components. Within this approach, necessary level of mechanical joining can be obtained through the use of lightweight material-steel adhesion promoters. This paper presents the development process of an automotive hybrid hood assembly using magnesium alloy sheets. In the first set of material pairs, the selected materials are magnesium alloy AZ31B alloy and steel(SGCEN) as inner and outer panels, respectively. In order to optimize the design of the inner panel, the stamping process was analyzed with the finite element method (FEM). Laser welding by CW Nd:YAG were used to join the magnesium alloy sheets. Based on the simulation results and mechanical test results of the joints, the determination of die design variables and their influence on formability were discussed. Furthermore, a prototype based on the proposed design was manufactured and the static stiffness test was carried out. The results demonstrate the feasibility of the proposed hybrid hood with a weight reduction of 25.7%.

Improvement of Electrical Conductivity of Transparent Conductive Single-Walled Carbon Nanotube Films Fabricated by Surfactant Dispersion

  • Lee, Seung-Ho;Kim, Myoung-Su;Goak, Jeung-Choon;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.254-254
    • /
    • 2009
  • Single-walled carbon nanotubes (SWCNTs) have attracted much attention as promising materials for transparent conducting films (TCFs), thanks to their superior electrical conductivity, high mechanical strength, and complete flexibility. The CNT-based TCFs can be used in a variety of application fields as flexible, transparent electrodes, including touch panel screens, flexible electronics, transparent heaters, etc. First of all, this study investigated the effect of a variety of surfactants on the dispersion of SWCNTs in an aqueous solution. Following the optimization of the dispersion by surfactants, flexible TCFs were fabricated by spraying the CNT suspension onto poly(ethylene terephthalate) (PET) substrates. The sheet resistances of the TCFs having different surfactants were investigated with treatment in nitric acid ($HNO_3$) whose concentration and period of treatment time were varied. It seems that the $HNO_3$ removes the surfactants from and is simultaneously doped into the SWCNT network, reducing the contact resistance between CNTs. TCFs were characterized by UV-VIS spectroscopy, thermogravimetric analyzer (TGA), scanning electron microscopy (SEM), and four-point probe.

  • PDF

Evaluation of Angle Optimization on Edge Test Device Setting in Modulation Transfer Function (변조전달함수 방법에서 엣지 장치 설정에 대한 각도 최적화 평가)

  • Min, Jung-Whan;Jeong, Hoi-Woun
    • Journal of radiological science and technology
    • /
    • v.43 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • This study was purpose to evaluation of Modulation Transfer Function in Measurements by using the International electrotechnical commission standard(IEC 62220-1) which were edge device each angle by using edge method. In this study was Aero(Konica, Japan) image receptor which is a indirect Flat panel detector(FPD) was used. The size of matrix 1994 × 2430 (14"× 17" inch) which performed 12 bit processing and pixel pitch is 175 ㎛. The results of shown as MTF measurements at IEC standard. The amount of data seemed reasonable and at an MTF value of 0.1 the spatial frequencies were 2.56 cycles/mm at an angle of 2.4°. MTF value of 0.5 the spatial frequencies were 1.32 cycles/mm at an angle of 2.4°. This study were to evaluate MTF by setting each angle 2.0°~2.8° degrees the most effective optimal edge angle and to suggest the quantitative methods of measuring by using IEC.

Photosensitive Barrier Rib Paste and Materials and Process

  • Park, Lee-Soon;Kim, Soon-Hak;Jang, Dong-Gyu;Kim, Duck-Gon;Hur, Young-June;Tawfik, Ayman
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.823-827
    • /
    • 2005
  • Barrier ribs in the plasma display panel (PDP) function to maintain the discharge space between the glass plates as well as to prevent optical crosstalk. Patterning of barrier ribs is one of unique processes for making PDP. Barrier ribs could be formed by screen-printing, sand blasting, etching, and photolithographic process. In this work photosensitive barrier rib pastes were prepared by incorporating binder polymer, solvent, functional monomers photoinitiator, and barrier rib powder of which surface was treated with fumed silica particles. Studies on the function of materials for the barrier rib paste were undertaken. After optimization of paste formulation and photolithographic process, it was applied to the photosensitive barrier rib green sheet and was found that photolithographic patterning of barrier ribs could be formed with good resolution up to $110{\mu}m$ height and $60{\mu}m$ width after sintering.

  • PDF

A Study on Optimum Modification of Dynamic Characteristics of Stiffened Plate Using Simplified Equation of Natural Frequency (고유진동수의 간이 추정식을 이용한 보강판 구조물의 동특성의 최적변경에 관한 연구)

  • 박성현;남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.48-58
    • /
    • 2002
  • There is a purpose of this study for the proposal of the optimum technique utilized for the vibration design initial step. The stiffened plate structure for the ship hull is made for analysis model. To begin with, dynamic characteristics of stiffened plate structure is analysed using FEM. Main vibrational mode of the structure is decided in the analytical result of FEM. The simplified equation on the natural frequency of the main vibrational mode is induced. Next, sensitivity analysis is carried out using the simplified equation, and rate of change of dynamic characteristics is calculated. Then, amount of design variable is calculated using this sensitivity value and optimum structural modification method. The change of natural frequency is made to be an objective function. Thickness of panel, cross section moment of stiffener and girder become a design variable. The validity of the optimization method using simplified equation is examined. It is shown that the result effective in the optimum modification for natural frequency of the stiffened plate structure.

Optimal design of the floor panel for an automotive platform under uncertainty of the vehicle length

  • Lahijani, Abdolah Tavakoli;Shojaeefard, M.H.;Khalkhali, Abolfazl
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.91-98
    • /
    • 2018
  • Length of a vehicle is an important variation to generate different variants of an automotive platform. This parameter is usually adjusted by embedding dimensional flexibility into different components of the Body in White (BIW) including the floor pan. Due to future uncertainties, it is not necessarily possible to define certain values of wheelbase for the future products of a platform. This work is performed to add flexibility into the design process of a length-variable floor pan. By means of this analysis, the cost and time consuming process of optimization is not necessary to be performed for designing the different variants of a product family. Stiffness and mass of the floor pan are two important functional requirements of this component which directly affect the occupant comfort, dynamic characteristics, fuel economy and environmental protection of the vehicle. A combination of Genetic algorithm, GMDH-type of artificial neural networks and TOPSIS methods is used to optimally design the floor pan associated with arbitrary length of the variant in the defined system range. The correlation between the optimal results shows that for a constant mass of the floor pan, the first natural frequency decreases by increasing the length of this component.

A Synthesis Ratio of Light Emitting Diodes and Quantization Noise for Increasing Brightness of Head-up Displays (헤드업 디스플레이 휘도 증가를 위한 LED 합성비율과 영상잡음에 대한 연구)

  • Chi, Yongseok
    • Journal of Broadcast Engineering
    • /
    • v.21 no.5
    • /
    • pp.816-823
    • /
    • 2016
  • This paper studies a light emitting diode(LED) overlapping method of a head-up display that consists of a digital micro device(DMD) panel and a red, green, blue LED in order to increase the brightness of display system and optical output power. This optimization overlapping method removes a quantization noise which occur due to LED overlapping too excessive and stabilizes the junction temperature of LED. In order to reduce junction temperature of LED, the a correlation between a green duty and LED overlapping ratio is studied. Throughout this study, the brightness of head-up display exhibited high increasement ratio of luminance around 33.3 percent at 39 percent overlapping method.

Optimization of GZO/Ag/GZO Multilayer Electrodes Obtained by Pulsed Laser Deposition at Room Temperature

  • Cheon, Eunyoung;Lee, Kyung-Ju;Song, Sang Woo;Kim, Hwan Sun;Cho, Dae Hee;Jang, Ji Hun;Moon, Byung Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.336.2-336.2
    • /
    • 2014
  • Indium Tin Oxide (ITO) thin films are used as the Transparent Conducting Oxide (TCO), such as flat panel display, transparent electrodes, solar cell, touch screen, and various optical devices. ZnO has attracted attention as alternative materials to ITO film due to its resource availability, low cost, and good transmittance at the visible region. Recently, very thin film deposition is important. In order to minimize the damage caused by bending. However, ZnO thin film such as Ga-doped ZnO(GZO) has poor sheet resistance characteristics. To solve this problem, By adding the conductive metal on films can decrease the sheet resistance and increase the mobility of the films. In this study, We analyzed the electrical and optical characteristics of GZO/Ag/GZO (GAG) films by change in Ag and GZO thickness.

  • PDF

I-V Measurements of large area $HgI_2$ X-ray detector produced by PIB method (PIB법을 이용한 대면적 $HgI_2$ 검출기의 I-V 특성평가)

  • Kim, Kyung-Jin;Park, Ji-Koon;Kang, Sang-Sik;Cha, Byung-Youl;Cho, Sung-Ho;Sin, Jeong-Uk;Mun, Chi-Ung;Nam, Sang-Hee;Kim, Jin-Yung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.254-255
    • /
    • 2005
  • In this paper, we investigated electrical characteristics of the X-ray detector of mercuric iodide (HgI2) film fabricated by PIB(Particle-in-Binder) Method on ITO substrates 17cm$\times$20cm in size with thicknesses ranging from approximately 200${\mu}m$ to 240${\mu}m$. In the present study, using I-V measurements, their electrical properties such as leakage current, X-ray sensitivity, and signal-to-noise ratio (SNR),were investigated. The results of our study can be useful in the future design and optimization of direct active-matrix flat-panel detectors (AMFPD) for various digital X-ray imaging modalities.

  • PDF